
 page 1 of 53

Horizon 2020
FET HPC RIA Project #671553

ExaNeSt – European Exascale
System Interconnect and Storage

http://www.exanest.eu/

Deliverable D4.3
Implementation Notes for the

Storage and Data Access Infrastructure
version 1.0 – 30 May 2017

EDITOR, CONTRIBUTORS

Partner Authors

FHG Bernd Lietzow

FORTH Anastasios Papagiannis, Manolis Ploumidis, Manolis Marazakis

VOSYS Angelos Mouzakitis, Alvise Rigo

INFN Lucia Morganti

MDBS Ying Zhang, Panagiotis Koutsourakis, Joeri van Ruth, Martin Kersten,
Niels Nes, Sjoerd Mullender

COPYRIGHT © 2017 by the Partners of the ExaNeSt Consortium

This document is owned and copyrighted as specified here. Permission to make digital or
hard copies, or to post on web servers this document in its entirety without fee is granted pro-
vided that: (i) the copies or posting are not made or distributed for profit or commercial ad-
vantage; and (ii) this copyright notice, the authors, and the Proprietary notice below appear
on the copies, and notice is given that copying is under the terms of this specific permission.

PROPRIETARY

Each of the Intellectual Property (IP) items described in this document is the Property of the
Partner of the ExaNeSt Project that generated or developed that specific IP item. Use of these
IP’s and the information in this document can only be made according to the terms here and
in the Grant and Consortium Agreements of the Project, and may require a license from the
owner. The Partners of the Project are: FORTH, ICEOTOPE, ALLINEA, ENGINSOFT,
EXACT LAB, MDBS, VOSYS, INAF, INFN, UMANCHESTER, UPV, FRAUNHOFER.
This information is provided “as is”, and no warranty is given that it is fit for any particular
purpose; the user thereof uses this information at its sole risk and liability.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 2 of 53

REVISION HISTORY

Version Date Description

0.1 6 Mar 2017 First skeleton of the deliverable

0.2 15 May 2017 First draft of the deliverable

0.3 29 May 2017 Revised according to internal reviews

1.0 30 May 2017 Final version, to be delivered to the European Commission.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 3 of 53

TABLE OF CONTENTS

LIST OF ABREVIATIONS	 4	
SUMMARY	 5	
1.	 EXANEST	STORAGE	INFRASTRUCTURE	 6	
2.	 EXTENDED	LINUX	I/O	PATH	 8	
2.1	 OVERVIEW	OF	DMAP	IMPLEMENTATION	 10	
2.2	 DMAP	TEST	SUITE	 11	
2.3	 PRELIMINARY	PERFORMANCE	EVALUATION	OF	DMAP	 11	
3.	 EXTENDED	DISTRIBUTED	FILE	SYSTEM	 14	
3.1	 BEEGFS	AS	EXANEST	CACHE	LAYER	 14	
3.2	 REPLICATION	AND	RESILIENCE	 15	
3.3	 JOINT	TEST	WITH	BEEGFS	AND	MONETDB	 19	
4.	 VM-TO-VM	COMMUNICATION	BASED	ON	MPI	AND	RDMA	VIRTUALIZATION	 20	
4.1	 RDMA	VIRTUALIZATION	 22	
4.1.1	 TARGET	APPLICATION	PROGRAMMING	INTERFACE	(API)	 22	
4.2	 INTRA-NODE	VM-TO-VM	MPI	ONE-SIDED	COMMUNICATION	ACCELERATION	 23	
4.2.1	 MPI	ONE	SIDED	COMMUNICATION	 23	
4.2.2	 OPENMPI	MODULAR	COMPONENT	ARCHITECTURE	(MCA)	 23	
4.2.3	 VIRTUALIZED	OSC	MCA	 23	
5.	 ANALYTICAL	DATABASE	REPLICATION	 25	
5.1	 DESIGN	 25	
5.2	 IMPLEMENTATION	 28	
5.3	 NEXT	STEPS	 36	
6.	 ADMINISTRATION	AND	TESTING	TOOLS	 37	
6.1	 MARVIN	1.0	-		A	DATABASE	PROFILER	FOR	MONETDB	 37	
6.1.1	 ARCHITECTURE	 37	
6.1.2	 MAIN	FEATURES	 39	
6.1.3	 NEXT	STEPS	 46	
6.2	 MONITORING	SYSTEM	 46	
6.2.1	 DEVELOPMENT	OF	THE	MONITORING	ARCHITECTURE	 46	
6.3	 EXPERIMENT	AUTOMATION,	STRESS-LOAD	AND	FAULT	INJECTION	TOOLS	 48	
6.3.1	 VM	LOAD	INJECTION	TOOL	(VLITO)	 48	
6.3.2	 EXANEST NETWORK FAULT INJECTION TOOL (EN-FITO)	 49	
6.3.3	 CHECKPOINT-RESTART	SIMULATION	SUITE	 52	
7.	 CONCLUSION	 52	
8.	 REFERENCES	 53	
	

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 4 of 53

LIST OF ABREVIATIONS

ACID Atomicity, Consistency, Isolation, Durability
ACL Access Control List
API Application Programming Interface
DBMS Database Management System
DMA Direct Memory Access
GDK Goblin Database Kernel
GUI Graphical User Interface
JSON JavaScript Object Notation
LRU Least recently used
MAL MonetDB Assembly Language
MCA Modular Component Architecture
MPI Message Passing Interface
NVM Non-Volatile Memory
NUMA Non-Uniform Memory Access
OSC One-sided communication (MPI)
RAID Redundant Array of Independent Disks
RDMA Remote direct memory access
RMA Remote Memory Access
SQL Structured Query Language
SSD Solid-State Drive
TUI Text-based User Interface
VM Virtual Machine
WLC WorkLoad Capture

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 5 of 53

SUMMARY

In this deliverable of WP4, D4.3 “Implementation Notes for the Storage and Data Access In-
frastructure”, we describe the implementation of each software component and tool that was
specified in deliverable D4.2:

● Extensions and enhancements to the common I/O path in Linux with focus on two

key areas: (i) supporting protected access to storage devices from user space, i.e. di-
rect access to storage with minimal kernel related overheads; and (ii) enhancements
to the access path for memory-mapped file access by, amongst others, making use of
NVM devices. [FORTH]

● Extensions to the BeeGFS parallel file system: Metadata replication mechanisms to
handle consistency management and resilience to failures, as well as incorporating
those mechanisms in a caching extension. [FHG]

● Acceleration mechanisms for Host-to-VM and VM-to-VM interactions that take into
account properties of the hardware platform and the unified interconnect. Two main
technologies for hardware-assisted virtualisation are considered: (i) use of RDMA
capabilities for accessing remote memory from within a virtual machine, and (ii)
HPC API remoting to improve the performance of HPC APIs (specifically MPI) for
applications that execute as an ensemble of virtual machines. [VOSYS]

● The design of a new replication mechanism for analytical databases, and its imple-
mentation in MonetDB. This replication scheme has been designed such a way that it
will not only help improving the availability, reliability, performance and scalability
of a database server in general, but also help exploiting the ExaNeSt storage infra-
structure and the ExaNeSt platform in particular. [MDBS]

● Several monitoring and testing tools: the ExaNeSt storage administration and moni-
toring [INFN]; experiment automation, stress-load and fault injection tools
[FORTH]; tests simulating HPC application I/O behaviours [INFN]; and a database
profiler [MDBS].

In the storage infrastructure, resilience is mainly addressed by replication mechanisms in the
file system. The system’s resilience will be stressed by the stress-load and fault injection
tools, while its health is monitored by the monitoring tools. In addition, the system’s resil-
ience level will be evaluated by the HPC and DBMS applications.

To achieve the objectives of WP4, the storage and data access infrastructure proposed
by ExaNeSt is built upon the following main components: (i) the distributed file system
BeeGFS, (ii) Linux data access technologies, (iii) KVM based virtualisation, and (iv) storage
system monitoring and administration tools. Moreover, we will use the state-of-the-art HPC
applications and analytical databases to guide the design of the envisioned infrastructure and
to evaluate and showcase the result.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 6 of 53

1. ExaNeSt	Storage	Infrastructure	

Figure 1.1. The ExaNeSt system architecture with distributed in-node NVMs (e.g. SSDs), in-

troduced as a new caching layer, and unified interconnect

Figure 1.1 shows the target architecture of the ExaNeSt project. Concerning the storage sub-
systems, its distinguishing feature is the extra Tier-0 storage devices added to the compute
nodes. The traditional Tier-1 storage devices are still used to persistently store large data sets.
However, the file system will be extended to consider Tier-0 devices as large persistent
caches. In this way, we can improve I/O performance by shortening the common I/O path,
and reducing data transfers to and from Tier-1 servers. In addition, this architecture will also
be able to reduce the energy consumption associated with frequent data movements.

In this deliverable, we describe the implementation of the storage components which together
form a highly efficient and scalable storage infrastructure towards exascale. The components
include:

● Section 2: extensions and enhancements to the common I/O path in Linux focusing
on two key areas: i) supporting protected access to storage devices from the user
space, i.e. direct access to the storage with minimal kernel-related overheads; and ii)
enhancements to the access path for memory-mapped files by, amongst others,
making use of NVM devices in Tier-0. [FORTH]

● Section 3: a caching extension to the BeeGFS parallel file system, together with rep-
lication mechanisms, to handle consistency management and resilience to failures,
respectively. [FHG]

● Section 4: acceleration mechanisms for Host-to-VM and VM-to-VM interactions that

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 7 of 53

take into account properties of the hardware platform and the unified interconnect.
Two main technologies for hardware-assisted virtualisation are considered: i) use of
RDMA capabilities for accessing remote memory from within a virtual machine, and
ii) HPC API remoting to improve the performance of HPC APIs (especially MPI) for
applications that execute as an ensemble of virtual machines. [VOSYS]

● Section 5: A new replication mechanism, called lazy logical replication. It is an
asynchronous logical replication management scheme using change set forwarding.
[MDBS]

● Section 6: the ExaNeSt monitoring and testing tools, including the ExaNeSt storage
administration and monitoring tools [INFN]; experiment automation, stress-load and
fault injection tools [FORTH]; tests simulating HPC application I/O behaviours
[INFN]; and a database profiler [MDBS].

● Section 7: A HPC application simulator, which launches a number of MPI processes
simulating the activity of checkpoint and restart, which puts a ceratin type of stress
on the file system. [INFN-CNAF]

Figure 1.2 shows how the storage components will be integrated into one system:
● Everything is run on enhanced virtual machines [VOSYS] (the inner orange coloured

part):
○ The extended BeeGFS is the file system on the virtual machine.
○ Together with the enhanced I/O path it provides fast storage access.
○ The file system monitoring tools and experiment automation tools run inside

the VM to monitor the file system and I/O access.
○ The DBMS and HPC applications run inside the VM to evaluate the overall

performance.
● On an ExaNeSt host machine (the black coloured outer part):

○ Again, BeeGFS is the file system, as well as the improved I/O access path
provide fast data access.

○ The file system monitoring tools and experiment automation tools can be
used to monitor the file system and I/O access.

○ A virtual machine is just a single file managed and served by BeeGFS.

In the design of the storage infrastructure, resilience is addressed by the whole software stack,
from the storage system to the applications:

● Replication mechanisms are added to the file system to ensure data availability under
system failures.

● Applications, such as MonetDB, have been extended with features to improve the
application’s level of resilience, while also make use of resilience mechanisms pro-
vided by the underlying layers, such as the file system.

● The system’s health is continuously monitored by the monitoring tools. Any signifi-
cant change will immediately be captured and reported.

● With the stress-load and fault injection tools, one can extensively put the storage sys-
tem under pressure to study the systems resilience, and detect possible points for
improvements.

● Finally, the HPC and DBMS applications run extensive tests to evaluate the system’s
resilience.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 8 of 53

Figure 1.2. The ExaNeSt storage components integration

2. Extended	Linux	I/O	Path	
[Contributed by FORTH]

Applications that interact with storage, have two common ways to do that, one is explicit I/O
using read()/write() system calls. Another way is to use memory-mapped I/O. This can be
achieved using the mmap() API that Linux kernel provides. A specific example of this sce-
nario in the context of the ExaNeSt project is the MonetDB in-memory database.

With memory-mapped I/O, common path lookups are not required, since data that re-
sides in memory have mapped virtual addresses, whereas misses cause page faults. Addition-
ally, there is no copy when moving data between memory and storage.

However, using memory-mapped I/O has a number of important disadvantages. First,
there is no explicit control over data eviction, as with a user-space cache, mmap uses an
LRU-based policy, which is not appropriate for all use cases. Applications cannot specify
themselves which pages need to remain in memory and which ones can be evicted. One pos-
sible path to achieve this with vanilla mmap is to lock important pages through the use of
mlock. However, the Linux kernel does not allow a large number of pages to be locked by a
single process. Another alternative is to use madvise system call which, however, provides
only hints. Second, each write operation in an empty page is effectively translated to a read-
modify-write, since mmap does not have any information about the status (allocated or free)
of the underlying disk page and the intended use. This can result in excessive device I/O. The

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 9 of 53

user applications should have the ability to inform mmap if a page contains garbage in order
to map it without reading it from the device. Third, mmap employs relatively eager evictions
in order to free memory to avoid starving other system operations. When large portions of the
application virtual address space are mapped, these aspects of mmap result in unpredictable
use of memory and bursty I/O. Empirically, we have often observed large intervals (of sev-
eral 10s of seconds) where the system freezes while it performs I/O and applications do not
make progress. This unpredictability and more importantly, large periods of inactivity are an
important problem for applications that serve data to online and user-facing applications.

(a) Initial DMAP architecture (ExaNeSt

deliverable D4.2.)

(b) Current DMAP architecture
 (ExaNeSt deliverable D4.3)

Figure 2.1. Evolution in the design of DMAP.

To address these limitations, while realizing the performance potential of memory-
mapped I/O, we have proposed DMAP, A custom Linux kernel module that bypasses the
tight interaction of mmap() with the Linux kernel buffer cache. In ExaNeSt deliverable D4.2,
we described the design of DMAP. Through a detailed performance evaluation and profiling
we opted to change some details of its architecture. Figure 2.1(a) shows the design of the
previously described architecture. In Figure 2.1(b) we show the new design. The main differ-
ences are that we have removed two queues, the hotpage and writeback queues. As they do
not affect the eviction policy and they only incur additional CPU overheads we removed
them from the design. We also added the pinned queue in order to keep some pages with high
priorities that cannot be evicted. Next, we describe the new architecture of DMAP in more
detail.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 10 of 53

2.1 Overview	of	DMAP	Implementation	
We have implemented a custom mmap() runtime system, as a Linux kernel module, named
DMAP. We provide an API that allows applications to explicitly specify (via ioctl’s) priori-
ties between 0 (highest) and 255 (lowest) at page granularity. Then, user applications mem-
ory-mapped I/O implements its own caching mechanism that bypasses the kernel page-cache
using the following structures:

● One primary priority queue that keeps all pages mapped to the application. Pages are
kept in page priority order.

● One eviction queue for pages that have been unmapped and can be evicted, if re-
quired. Pages are sorted based on their device offset to assist with I/O merges.

● One pinned queue for maintaining pages that may be flashed to the device but should
not be unmapped from the key-value store address space. This queue is for short-
lived pages with high priority when the buffer is full of low priority pages.

● One in-memory red-black tree in order to keep dirty pages. This enables more effec-
tive merges as the pages are kept sorted and separated from clean pages.

● One free page pool that is implemented as a simple in-memory list. For each page-
fault we use this pool to get an empty page.

DMAP uses replacement policy based on two levels of priority queues. These are the
primary and eviction queues. When a new page-fault occurs we get a new page from the free
page pool, we read the data from the device (if required) and then we enqueue this in the pri-
mary queue. If primary queue is full we have to dequeue an item. Dequeue operation removes
a page that has the lower priority compared to the others. After a dequeue operation from the
primary queue we unmap this page from application address space and we enqueue it to the
eviction queue. In order to enable larger I/Os we dequeue pages from primary queue in
batches of 256 pages. In the case where we cannot find a free page upon a page-fault we de-
queue a batch of pages from eviction queue. This means that we have to write their data into
the device and then add them to the free page pool. Priorities are kept only in-memory and
the user application should set them.

DMAP significantly reduces unpredictability with respect to memory management
during runtime. It uses as configuration input the maximum amount of memory it should use
during operation. Using this information, it calculates the size of L0 index that fits in memory
and based on this it calculates the sizes of its memory-mapped I/O structures and preallocates
all structures. Typically, the size of the primary queue is 10x larger than the eviction queue
and the pinned queue is small.

DMAP allows higher parallelism than mmap. This is necessary both in the page map-
ping path (at page faults) and in the eviction path, to allow SSDs to operate under high
concurrency. We achieve this by using an organization of memory in banks, similar to DI-
MMAP [EHA12, EHA15]. This allows us to serve page-faults that refer to different banks in
parallel. Unlike DI-MMAP, we use fine grain locks within banks, which results in even more
parallelism during read and write I/Os.

The replacement policy of DMAP is less “eager” as compared to mmap. This means
that we try to keep as more pages as we can in memory, as we do not evict any pages if there
is no pressing need to do so. This allows DMAP to generate larger I/Os during spill opera-
tions, by merging more I/O requests.

Finally, DMAP provides a non-blocking msync call that allows the system to continue
operation after invoking a commit, while pages are written asynchronously to the devices. In
order to accelerate msync we keep dirty pages sorted based on device address in an in-
memory red-black tree. To ensure that it operates correctly we have to lock this tree in order
not to add new dirty pages in it. To overcome this limitation we also keep a timestamp for

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 11 of 53

each page that shows when a page becomes dirty. This allows us to do a fine grain locking as
we can add new dirty pages in the red-black tree during msync. To write dirty pages, we iter-
ate the red-black tree and we write only pages with timestamp older than the timestamp of
msync call. This approach ensures that pages that become dirty after msync are not written in
the device. However there will be pages that are already dirty and changed after msync which
can be written which does not break msync semantics.

2.2 DMAP	Test	Suite	
For correctness and evaluation purposes we develop a test suite for DMAP. We use both our
custom tests and several tests based on FIO benchmark [FIO]. More specifically these in-
clude:

1. For performance evaluation we built
(a) several scripts for the FIO I/O tester application, including both random and sequen-

tial I/O patterns, for read, write and mixed read-write I/O workloads. For all cases we
use the mmap() ioengine. This is used for files.

(b) custom multithreaded microbenchmarks for all combinations of rand and sequential
patterns and read, write and mixed workloads. It reports IOPS for each thread. This is
used for block devices.

3. For correctness validation we implemented:

(a) a test (not-automated yet) that checks if msync call writes only dirty pages.

(b) some FIO scripts that write a random pattern to the device and then during a second stage
verify the content of files. We use it, and we have verified that it produces a correct output for
both in-memory and out-of-memory datasets.

(c) also ia set of custom programs, operating as follows:
● Write sequential pages with random data and computes a crc checksum for each

page. These checksums are kept outside of mmap (in memory).
● Execute msync and munmap.
● Proceed to mmap() again the device, read the pages and compute the checksums.
● Compare the checksums with the original checksums.

This test sequence covers both files and block devices, and DMAP passes all the tests.

2.3 Preliminary	Performance	Evaluation	of	DMAP	
In this section we provide a preliminary evaluation using the FIO benchmark. Fio supports
already a mmap() test backend (“ioengine”) and thus no changes required. We evaluate ran-
dom reads and writes with 4KB block size. In all cases the fio runs are time based and the
duration of them are 10 minutes. Furthermore, we use two test datasets, one that fits in main
memory and another that is out-of-core. In all experiments, we use files (not block devices).
In order to limit the amount of memory in DMAP case we specify in our runtime this amount
of memory. In the case of vanilla mmap we boot the machine with the desired amount of
memory (using mem=XXG Linux kernel boot option). For the small dataset, we use 16GB of
main memory and 8 files of 1GB each. For the large dataset, we use 4GB of main memory
and 32 files of 1GB each

Our experimental platform is a server system with two quad-core Intel(R) Xeon(R)
E5520 CPUs running at 2.27 GHz. The system is equipped with 24 GB DDR-III DRAM. As

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 12 of 53

a storage device, we use a hardware RAID-0 with eight Intel X25-E SSDs (32 GB) – 256GB
in total. The storage controller we use is LSI MegaRAID SAS 9260-8i.

In order to find out the maximum I/O performance of our testbed we use FIO benchmark
[FIO], with libaio engine and direct I/O. For random experiments we use 128 outstanding
I/Os and 4KB block size. For reads it achieves 45.6K IOPS (182.52 MB/s) and for writes it
achieves 19K IOPS (76.2 MB/s). For sequential performance we use 1 outstanding I/O and
16MB block size. For reads it achieves 1.28 GB/s and for writes 624 MB/s.

Figure 2.2. IOPS for DMAP and mmap() using the in-memory dataset (higher is better).

The results of experiments with the in-memory dataset are summarized in Figure 2.2.
For random reads, vanilla mmap() provides 25% higher throughput. In this case the dataset
fits in memory and no I/O is required. To further investigate the reason that DMAP results in
lower performance compared to vanilla mmap() we measure the number of page-faults from
our internal counters. It seems that in the case when the dataset fits in memory and there
should not be any page faults, in DMAP exists. On the other hand no I/O is done as the data
already exists in memory but only the page faults. This is the reason that the performance
drop is small. From our profiling it seems that there are some invalidations for some pages
that originate from Linux kernel, and we should further investigate this issue. In the case of
random writes, DMAP provides 4.9x higher throughput. This is because DMAP takes a less
“eager” approach for data evictions. This number shows that for an application where the
write dataset fits in memory, the performance improvement can be significant.

Figure 2.3. IOPS for DMAP and mmap() using the out-of-memory dataset (higher is better).

Figure 2.3 summarizes the results of experiments with the dataset that does not fit in
memory. In this case the bottleneck is the device throughput and the differences are not so

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 13 of 53

large. More specifically in the case of random reads DMAP provides about 2% higher
throughput and in the case of random writes DMAP provides 15% higher throughput.

In all cases DMAP provides better performance in the case of writes because of the
more lazy eviction policy that enables larger I/Os due to merges – because there is a larger
time window to do it. In the case of reads when the dataset does not fit in main memory –
which is the common case – we provide similar performance. For the dataset that fits in main
memory there is a performance degradation as described earlier and we have to further inves-
tigate it.

In the experiments reported so far, there is no differentiation among the data blocks be-
ing accessed. We expect performance gains with DMAP, as our design explicitly handles pri-
orities, assuming of course that applications can distinguish important and long-lived pages
compared to short-lived pages that should be evicted shortly. To evaluate this scenario we run
FIO using the large dataset for both reads and writes. As the dataset consists of 32 files, 1GB
each of them, in DMAP we set the priority of a single file to 0 and for the other 31 files we
set the priority to 1. Figures 2.4 summarizes the results of this experiment, for reads. Using
priorities in DMAP, we can keep a single “preferred” file in memory and this enables it to
achieve much higher performance compared to the others. Figure 2.5 shows the same ex-
periment for random writes where we observe the same behaviour. We plan to provide a
more detailed analysis using different priorities for different files but the idea is that the sub-
set of files that fits in memory will achieve memory access times while the others will
achieve storage device access times. We do not provide a mechanism that allows the user to
throttle the access time of files that have low priority and fits in main memory.

Figure 2.4. FIO random read experiment with priorities (y-axis is log-scale), using the out-

of-memory dataset (higher is better). File 0 has been assigned higher priority.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 14 of 53

Figure 2.5. FIO random write experiment with priorities (y-axis is log-scale), using the out-

of-memory dataset (higher is better). File 0 has been assigned higher priority.

Currently, FORTH is working with MonetDB for an evaluation using the TPC-H data-
base analytics benchmark [TPCH]. Furthermore we have ported DMAP for ARM architec-
ture and we plan to provide our preliminary evaluation on ExaNeSt platform.

3. Extended	Distributed	File	System	
[Contributed by FHG]

In this section, we describe the development of the extension to the BeeGFS parallel distrib-
uted file system. It consists of an intransparent caching layer based on the BeeOND technol-
ogy, as well as replication mechanisms providing resilience to failures.

3.1 BeeGFS	as	ExaNeSt	Cache	Layer	
Using the BeeOND (BeeGFS-on-Demand), it is possible to set up a parallel file system on the
fly. This file system acts as an independent file system. Unlike the typical use case of parallel
file systems, it does not use dedicated server hardware for metadata and bulk storage. Instead,
the local storage devices, e.g. flash drives, in the compute nodes are used.

As described in previous documents D4.1 and D4.2, this system can be used to set up a
separate file system for each compute job. When the scheduling system starts up a compute
job on a number of compute nodes, an instance of BeeOND will also be also started, using
the flash storage devices in or close to the compute nodes running the computation them-
selves. Because BeeOND uses the BeeGFS parallel file system technology, it can aggregate
the space and bandwidth of the flash storage devices in all nodes, providing a dedicated stor-
age for this job to be used as a data cache or an application scratch area. Data which are local

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 15 of 53

to the job, for instance temporary data or data which have to be accessed numerous times dur-
ing the computation, can now be stored inside this cache, keeping the load off the global clus-
ter file system and network, as well as improving performance by using storage devices much
closer to the actual computation.

In an exascale context, single node failures during job execution are expected, and we
aspire to minimize their impact on performance and data consistency. For a parallel file sys-
tem this means that no data may be lost or in an inconsistent state even after a node has
failed.

The BeeOND package has been extended to support the storage and metadata mirror-
ing and failover features present in BeeGFS. This way it is now possible to activate metadata
and storage mirroring automatically when starting up a new BeeOND instance, as well as
replacing failed nodes. On startup of a new job, storage and metadata nodes are grouped in
pairs (mirror buddy groups) which mirror each other’s data, using the mirroring mechanism
described in the following section. If any single node fails during a job, there will be no data
loss, and access to the data continues after a short interruption. Even though the application
on the failed node itself might have to be restarted from a previous checkpoint, the data in the
BeeOND based cache will still be available (e.g. to all the other nodes which are part of that
job), eliminating the need to re-calculate or re-copy from a global storage system.

3.2 Replication	and	Resilience	
The server side of BeeGFS is divided into three parts: the storage servers, the metadata serv-
ers, and the management service.

The storage servers manage the actual file contents, which are distributed across multi-
ple storage targets. Each storage server hosts one or more storage targets. Files are split up
into chunks and distributed across a number of storage targets. The metadata servers are re-
sponsible for managing the directory tree, as well as information about which storage targets
hold the chunks of a file. The management service keeps track of the other nodes in the sys-
tem: clients, storage servers, and metadata servers. It has information about how to contact
the servers, and in a failover-enabled setup it is also responsible for deciding when a node is
assumed unreachable and a failover should happen.

Previous versions of BeeGFS already supported some level of replication and failover.
However, this was only available on the storage servers, so while the file contents were repli-
cated, the metadata (directory structure, file names etc.) was not. In case of a metadata server
failure, parts of the file system would be permanently lost.

The available mirroring of data on the storage servers done using two storage targets
located on two different storage servers. One target plays the role of the “primary” while the
other is the “secondary”. While both targets are online and available, a client will always send
its write requests to the primary storage target, from where they will be forwarded to the sec-
ond storage target. Once data has been written to both targets, the write request is acknowl-
edged to the client. Read requests are served from both targets in order to increase read per-
formance.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 16 of 53

Each target of this pair can fail at any time. Should the secondary target fail, the for-
warding of requests will be impossible. However, all read and write requests are still being
executed by the primary target, so from the clients’ point of view, there is no interruption in
service. As soon as the primary target detects the forwarding of a write request has failed, it
will mark the secondary as “needs-resync”, because from this point on, the data on the pri-
mary and secondary target is no longer identical. Should the secondary target come back on-
line, its contents will need to be resynchronized with the contents of a primary target before it
can start serving read or write requests again. The resync will copy over all chunks that have
been modified since the target went offline.

In case the primary target fails, each request made by the client side will fail initially.
But this failure is not passed on to the user application, instead the client will retry contacting
the primary target. After a short delay the management service will detect that the primary
target has gone offline and will initiate a failover. Once the client is aware of this failover, it
will redirect its requests to the former secondary target, which has now become the primary
target and will be able to complete the requests normally. From the perspective of the user
application there will not be any difference, except for the slight delay before the failover is
executed.

In the frame of the ExaNeSt project, a similar mirroring and failover mechanism has
been implemented for the metadata servers, as well. This proved to be more complex, be-
cause on a storage target, each request will only modify a single chunk of data, while on a
metadata server a single request can touch multiple objects at once – for instance, moving a
file from one directory to another. Therefore, the forwarding mechanism based on requests
and retries was extended using a sequence number mechanism which ensures every request is
executed exactly once even if it had to be sent multiple times in case a server was unavailable
because of a transient (e.g. short network outage) or a permanent (e.g. hardware damage)
failure.

The resync mechanism also had to be extended. For a storage target, it is valid to copy
over all chunks that have been modified, while at the same time accepting new requests and
forwarding them. This will end in a complete copy, because even if a chunk is updated while
the resync is running, either the update will happen before it is copied over, and the copy will
already include the new version, or the update will happen after the copy, in which case for-
warding the update will also result in two identical copies. In the case of a metadata server,
this resync mechanism becomes more complex because modifications are not idempotent,
and therefore have to be executed exactly once and in the correct order. Therefore the resync
process had to be split into two phases. The first phase makes an exact copy of the contents of
the metadata server. During that time, all incoming requests executing updates on already
copied objects will be stored in a modification resync queue. The requests in this queue will
be sent to the secondary server by the second resync phase. Only after the contents of the
queue have been completely processed on the secondary server, the normal forwarding of
requests is resumed.

The management service is a central instance of the system. It plays a very important
role because it is constantly monitoring the state of all the other services (storage targets and

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 17 of 53

metadata servers), as well as deciding when a server is considered offline and if a failover has
to take place when a server becomes unavailable. Despite its importance, it handles a com-
paratively small set of data, mainly consisting of the state of each server or target (reachabil-
ity and data consistency), and a set of information about it, e.g. network addresses and free
capacity. Replicating the management service simply using a mirror pair, as was done in the
storage and metadata services, would not be sufficient, because the mirror pairs mechanism
BeeGFS uses relies on a single central instance deciding when a failover occurs. It was there-
fore decided to implement a distributed management service, with a leader election to deter-
mine where the central point of contact of the management service is, and which part of the
distributed system is in charge of making decisions about the state of the other system com-
ponents. Several instances of the management service run on separate machines, and use a
distributed key-value store to ensure the data set is consistent across all management service
instances. Since the management logic (i.e. the component that monitors the state of the other
nodes and decides when a resync is needed, etc.) must be running exactly once, a leader elec-
tion scheme has been implemented. One management service instance called the leader pro-
vides contact with the rest of the system and executes the management logic. The other man-
agement service instances are called the followers. They are only monitoring the state of the
leader, but not executing any logic themselves. Should the leader become unavailable, this is
detected by one or more of the followers, which will initiate a leader election. The election
ensures that exactly one of the followers becomes the new leader, and executes the manage-
ment logic from then on, as well as providing the new point of contact for all other compo-
nents of the file system.

In order to connect to the management service, a node only needs to know the address
of one of the management instances. If this instance is the leader, then the connection is initi-
ated. If the instance is only a follower, it will reject the connection and inform the connecting
node about the network address of the current leader. However, for redundancy it is necessary
that each node knows more than one management service address, in case one of the in-
stances has already failed. Therefore in the default node configuration, a list of management
locations can be entered.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 18 of 53

Figure 3.2. The BeeGFS management service replication scheme showing multiple manage-

ment service instances communicating over etcd

Etcd [ETCD] is used as a distributed storage. It provides a mechanism that keeps data
consistent across a number of nodes in the form of a key-value store, based on the Raft con-
sensus algorithm [OO14]. Raft itself is designed based on leader election and a distributed
state machine. It ensures that an update is persistently committed to the replicated storage,
before acknowledging that update to the requester. Etcd provides a mechanism for leader
election itself, which is be used to determine the leader instance of the distributed manage-
ment service.

The internal representation of the state of each storage target and metadata node had to
be changed to accommodate for this new model. In previous BeeGFS versions, each node or
target managed its own state, and the management service was merely responsible for distrib-
uting the information, and deciding when nodes are offline and a failover has to be initiated.
For the system working reliably on a distributed state machine, the flow of information has to
be restricted to one direction. The management service is now solely responsible for manag-
ing the state of a node, i.e. whether or not the node is considered reachable and whether the
data on that node is up-to-date. The nodes can still push updates to the management service,
but ultimately have to observe the acknowledgement of the management service before as-
suming a new state. The management service itself (i.e. the management logic) can also
change the state of a node, for example in case it has detected that a node needs a resync. This
is also implemented by sending an update from the state decision component of the manage-
ment service to the distributed state machine.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 19 of 53

3.3 Joint	test	with	BeeGFS	and	MonetDB	
In order to test the interoperability of several components envisaged to run in the ExaNeSt
project, an integration test was performed as a collaborative effort between Fraunhofer
ITWM and MonetDB Solutions. To simulate the ARM environment, an ARM-based virtual
machine was used. The physical host running this VM had four SSDs. An instance of
BeeGFS was set up to allow the virtual machine parallel access to the SSDs, which is meant
to simulate a BeeOND instance running on ExaNeSt compute nodes. To simulate direct ac-
cess to a flash storage device inside an ExaNeSt compute node at the same time, a partition
on one of the SSDs was set aside, and the virtual machine was given direct access to that par-
tition. BeeGFS was using one metadata server (running on one of the disks not shared with
the VM), and four storage targets (one on each SSD). The host machine used has 40 CPU
cores and 64GB of RAM, of which only 4 cores and 8GB were allocated to the VM. This en-
sured that enough resources were available to run the VM as well as BeeGFS concurrently on
the same hardware. Several database benchmarks were then performed on the MonetDB in-
stance running inside the VM. The description of these benchmarks, as well as a discussion of
the results, can be found in deliverable D2.3.

Figure 3.2. Schematic of the BeeGFS and MonetDB test setup. Top Left: MonetDB and

BeeGFS client running in an ARM VM, Right: BeeGFS server-side software running on the
host machine, accessing four SSDs

This setup is flexible. If during the optimization phase of the project, more extensive
tests should be done, it can be easily extended to running multiple VMs. While now, only one
SSD is accessed directly by a VM, in a multi-VM setup, each VM can have access to a parti-
tion on one of the other three SSDs, while the rest of the storage space is shared between the
BeeGFS metadata and storage services. It is also imaginable to access a second BeeGFS in-
stance, which is hosted outside the machine on a number of dedicated storage servers with
spinning disks, to simulate a two-tier approach with a global BeeGFS and a BeeOND-based
cache layer on flash storage devices.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 20 of 53

4. VM-to-VM	Communication	based	on	MPI	and	RDMA	Vir-
tualization	
[Contributed by VOSYS]

This section describes the implementation of the generic API Remoting framework. The
framework is used to support the RDMA device para-virtualization and the intra-node
OpenMPI acceleration. As described in a previous deliverable, D4.2, API Remoting is a
software para-virtualization solution which depends on split co-operative processes design,
as illustrated in Figure 4.1.

Figure 4.1. API Remoting abstract model.

 The design of the framework provides a 1-to-1 association between a guest process
and a corresponding backend thread. A backend listener thread keeps track of a set of eventfd
file descriptors that are handled and updated by a kernel module using the poll(2) system call.
In case a new guest application needs to access the API Remoting library, a new backend
thread is spawned and assigned to handle the specific guest application’s requests.

 During the exploration, we have identified two groups of application operations, re-
lated to the RDMA user-space library. Control path operations are usually function calls that
can transfer all their information from the guest to the host through their arguments. The calls
do not depend on the application’s state, i.e., accessing process’ memory through pointers.
Forwarding a control path call introduces a small overhead of a 8-word memory copy. On the
other hand, data path operations require the guest application to access host’s resources (e.g.,
memory mapped devices, allocated buffers, without hypervisor’s involvement). Host and
guest kernels are involved in this procedure in order to share the resource between the two
processes.

 The key point of the framework’s design is the transport layer. The framework uses
user-space shared memory as the transport layer in order to minimize the overhead due to
memory copies. Two allocation-aware shared memory procedures have been implemented in
order to make feasible memory sharing between a guest process and a host process. A guest-
to-host procedure shares a buffer from the guest process address space with a host process
and a host-to-guest procedure shares a buffer from a host process address space with a guest

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 21 of 53

process. The allocation procedures serve different call’s characteristics for control and data
paths.

 On a guest function call, the process exchanges data with the backend thread via a
shared-memory control segment which is initialized between the two processes at the first
API call. Figure 4.2 shows the structure of this memory segment, whose length is 1 page.
This segment contains a synchronization primitive, and the description of the forwarded API
call. An unsigned integer known at compile time from both frontend and backend differenti-
ates each supported call of the target API. API calls with data structures can be forwarded
with appropriate frontend and backend serialization. After the serialization procedure the data
may be copied to the ‘space for indirect access’.

 The control area is shared among multiple processes, so they should use synchroniza-
tion mechanisms to preserve the consistent state of the resource. Since the design of the
transport layer is based on shared memory, a sense reversal memory barrier can be placed
into the control shared memory area. The downside of this spinlock-based approach is that it
may starve the system spinning on the lock. For this reason, a new primitive for processes
synchronization was designed and implemented. The new synchronization solution relies on
communication between the two kernels, based on Virtio messages. This allows the calling
process to be put to sleep until the remote process calls the barrier primitive. Doing so, the
system can schedule a different process while the remote process is performing the barrier
call, without wasting CPU cycles spinning on a spinlock.

 The last feature of the API Remoting framework is the ability to support asynchro-
nous function execution, on a guest application, by issuing a POSIX signal. This is important
when an API uses user-defined callback functions on completion events. Figure 4.3 shows the
execution steps, starting from the generated signal on the host process (1), until the actual
execution of the user defined callback function at the guest application (6). The signal for-
warding is assisted by the host and the guest kernels.

Figure 4.2. Control shared memory area.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 22 of 53

4.1 RDMA	virtualization	
This section describes the virtualization work and the adaptation of the API Remoting
framework the RDMA device.

4.1.1 Target	Application	Programming	Interface	(API)	

Applications can utilize the RDMA device through the ‘libeusrv’ library. The library takes
care of the communication, which in turn programs the hardware device through memory
mapped registers. The following list contains the library’s API calls which are available in
guest applications by means of API Remoting.

1. eusrv_dma_init - Initializes the userspace RDMA library
2. eusrv_dma_cleanup - Cleans up the userspace RDMA library
3. eusrv_alloc_buf_l - Allocates a DMA buffer on the local node
4. eusrv_alloc_buf_r - Allocates a DMA buffer on a remote node
5. eusrv_free_buf - Frees a DMA buffer
6. eusrv_get_buf - Queries for an allocated DMA buffer with an ID
7. eusrv_get_buf_id - Queries for an ID of a specific DMA buffer
8. eusrv_get_buf_memory - Gets a pointer to a DMA buffer in the process address

space
9. eusrv_dma_submit_transfer - Starts a transfer between 2 DMA buffers
10. eusrv_dma_submit_transfer_from_mem - Starts a transfer from the local memory to

a DMA buffer
11. eusrv_dma_submit_transfer_to_mem - Starts a transfer from a DMA buffer to local

memory
12. eusrv_dma_status - Gets the status of a transfer

Figure 4.3. Signal forwarding

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 23 of 53

13. eusrv_dma_get_node - Queries information based on a node id

Calls to the virtualized RDMA API library are treated as control path operations.
However, some of these calls require assistance from the host kernel to fully implement the
functionality.

A DMA buffer allocation should give access from the guest application to the physi-
cal DMA buffer, in order to avoid overheads due to memory copies. Direct memory accesses
from the guest process to the DMA buffer are achieved by inspecting the memory pages that
construct the DMA buffer on the host, and remapping them to the guest address space. After
the remapping procedure, the guest application can use standard load-store instructions to
read and write the data from the DMA buffer. Accessing a host resource without involvement
of the hypervisor is treated as data-path operations. Transfers between DMA buffers can be
started from the guest application without any extra copy of the buffer payload. Transfers
might also register a user-defined callback function in case of a successful transfer with a sig-
nal that will be forwarded from the backend application to the guest application.

4.2 Intra-node	VM-to-VM	MPI	One-Sided	Communication	acceleration	
In this section, we describe the virtualization of MPI’s Remote Memory Access communica-
tion mechanisms for intra-node communication. The concept of guest and host co-operative
processes of API Remoting will apply to this work with extensions to the MPI library which
will be used by the guest processes. The extended MPI library will cooperate with a backend,
on the host, which will act over shared memory.

4.2.1 MPI	One	Sided	Communication	

Remote Memory Access communication allows the initiator process to specify the send and
the receive buffers (MPI memory windows) on a data transfer call. The process allocates and
shares the valid memory window in a communicator with the collective call
MPI_Win_allocate, or a variation when the communicator synchronization procedure differs.

4.2.2 OpenMPI	Modular	Component	Architecture	(MCA)	

OpenMPI uses the term Modular Component Architecture (MCA) to classify the different
MPI features in components; this increases flexibility by allowing to decide which one of
them will be picked at runtime. An MPI application might load more than one MCA for the
same type of functionality. For instance, an MPI_Send can make use of different MCAs ac-
cording to the destination process’ node. In fact, it might use at runtime an MCA based on
sockets if the destination process is not running in the same node, while using a different
MCA if the process resides in the same node. This flexibility of the MCA allows fine grained
solutions able to dynamically adapt to different use cases.

4.2.3 Virtualized	OSC	MCA	

This section describes the implementation of the virtualized MCA in order to support intra-
vm RMA accelerated over shared memory.

The virtualized MCA is implemented and coded as a standard OpenMPI MCA in its code-
base. OpenMPI existing facilities have been used and the communication primitives are based
on the API Remoting framework. In that way, the internal state of the allocated MPI memory
window is handled by the OpenMPI library, on the guest, but also the host is notified when a
memory transfer or allocation should take place.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 24 of 53

The backend process keeps track of the MPI window allocations. Whenever an MPI window
allocation takes place, the virtualized MCA informs the host process in order to share the
window buffer. Therefore, it is aware of the allocated window flavor and the synchronization
policy that should apply on data transfer calls.

 For data transfer calls (e.g., MPI_Put), the virtualized MCA will request to the
backend a ‘Put’ command on specific memory windows. The request will be handled by the
backend, which will make the copy over shared memory. Furthermore, the backend imple-
ments all the reduce operators which will be used to compute a result based on a guest mem-
ory window. Figure 4.4 illustrates an example state of the system after a collective
MPI_Win_allocate() call. Each MPI process has a local memory window and three more
windows that can perform RMA operations. During the window allocation, the backend
process was informed with the addresses of the new windows. From that point the backend
process is able to perform RMA operations over the registered MPI memory windows in the
communicator.

Figure 4.4. Backend access to guest MPI memory windows

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 25 of 53

5. Analytical	Database	Replication	
[Contributed by MDBS]

In this section, we describe MonetDB’s new replication mechanism, called lazy logical repli-
cation, that has been designed and implemented under the context of ExaNeSt to i) push
MonetDB towards exascale (in terms of performance and scalability), ii) improvement the
resilience of a MonetDB database server, and iii) facilitate the exploration of the ExaNeSt
hardware and software resources for typical analytical database applications in cloud envi-
ronments.

5.1 Design	

Figure 5.1. architecture of lazy logical replication in MonetDB

Lazy logical replication is an asynchronous logical replication management scheme using
change set forwarding. Simplicity and ease of end-user control have been the driving argu-
ments in its design and development. Figure 5.1 shows the architecture of lazy logical repli-
cation, which has been designed to achieve the following goals:

● Workload (re-)distribution
● Database scalability
● Database backup
● Availability and resilience
● Database multi-versioning
● (Partial) data (re-)partitioning

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 26 of 53

What is lazy logical replication?

In a data analytics environment, the workload on a database is mostly read-only. Applications
grind the data for business insights and summarisations through visual dashboards. Updates
are often collected as (micro-) batches and injected into the data warehouse at regular inter-
vals.

If the ingestion rate increases, the updates become more complex, or the number of
concurrent data analysis applications rises, it becomes mandatory to create a master/replica
infrastructure, as shown in Figure 5.1:

● The master instance is responsible for handling all updates to the primary database,
while replica instances are created to satisfy the responsiveness required by the appli-
cations.

● Updates on the primary database are propagated to the replicas in a lazy fashion, i.e.
only when pulled by a replica.

● Next to replicating the primary database, a replica functions as a normal database
server, so that its users can both run analytical queries as well as modify local data.

● Note that replications only go in one direction, i.e. from the master to the replicas.
Although users of replicas can be allowed to modify their local data, but the modifi-
cations will stay on that replica (hence they are denoted as “local write” in Figure
5.1).

A key observation for this common business scenario is that the replicas may lag a
little behind. Because data analysts often look at long-term patterns using statistical summari-
zations, and therefore the outcome is less dependent on what happened during the last minute.
Furthermore, the replicated data warehouse is likely to run in a Cloud setting, or a cluster
with a shared global filesystem. This creates room to simplify the synchronisation between
instances, relying on the services provided by the filesystem. In particular, master and repli-
cas share the same <dbfarm> directory.

Lazy logical replication relies on detecting change sets in the persistent tables at the
master instance, which are collected in a transactional safe way, and replayed at the rep-
lica(s). Replays can be interrupted (i.e. instead of replying all change sets, replay the change
sets only up to certain moment in time) to obtain time-warped copies of the master database.

When to consider lazy logical replication?

The goal of this extension module is to ease backup and replication of a complete master da-
tabase with a time-bounded delay. This means that both the master and the replicas run at a
certain heartbeat (e.g. in seconds), managed independently by each instance, by which infor-
mation is made available by the master or read by the replicas. Such an instance can be freely
used for query workload sharing, database versioning, and (re-)partitioning. For example, a
replica can be used to support a web application which also keeps application specific data in
the same instance, e.g. session information.

For a replication (also called a clone), we need either all update logs for the entire
lifetime of a database, or a binary database snapshot with a collection of logs that have re-
corded all changes since the snapshot was created. Then, the logged updates are replayed
against an empty database or the snapshot until a specific point in time or transaction id is
reached, as identified by the clone itself. A backup is regarded as a simpler form of replica-
tion, because the solely purpose of a backup is to keep a copy of the original database, there-
fore it should not be used to process other queries.

Tables taken from a master can be protected against updates and inspections in a rep-
lica instance using the schema access policies defined by the master. Depending on the pol-
icy, a user of a replica might be permitted to update the local database of the replica (locally

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 27 of 53

created tables or replicated tables), however, updates against replicated tables will not be
automatically forwarded to the master.

Any transaction change set replay that fails stops the cloning process. By default,
only persistent tables are considered for replication, and all constraints maintained by the
master are carried over to the replicas. Updates under the ‘tmp’ schema, i.e. temporary tables,
are ignored.

The underlying assumption of the techniques deployed is that the database resides on
a proper (global/distributed) file system to guarantee recovery from most storage system re-
lated failures, e.g. using RAID disks or Log-Structured-File systems.

Figure 5.2. implementation of lazy logical replication in MonetDB, highlighting the com-
ponents modified and extended.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 28 of 53

5.2 Implementation	
Figure 5.2 shows the MonetDB software stack with the components which have been modi-
fied or extended to implement the lazy logical replication highlighted. Because we have cho-
sen to implement all user interactions for managing the master and replicas through SQL
functions, nothing at the SQL language level (e.g. the parser, compiler and execution plan
generator) needs to be changed. All changes were made in the lower level components that
are involved in processing the physical query execution plans:

● “MAL1 program” contains physical query execution plans, one per transaction.
● “MAL optimizers” is a collection of optimisers, e.g. the common expression detector

and the dead code eliminator, that each optimises one aspect of a MAL program. A
new optimiser has been added to detect the change set in a MAL program, i.e. MAL
statements that modify the SQL catalogue or update the persistent data storage.

● “MAL kernel” is the component responsible for executing the MAL programmes. It
interacts with the “GDK2 kernel” component, which manages the columnar physical
storage of MonetDB, to eventually carry out query executions.

● On a master, the MAL kernel has been extended to write the change set detected by
the new MAL optimiser to the log files, called wlc_logs (WLC stands for WorkLoad
Capture).

● On a replica, the MAL kernel has been extended to read the log files from the
wlc_logs and replay the change sets on its local database. Note that, with the current
implementation, a replica is only capable of reading WLC log files from a master in-
stance under the same <dbfarm>.

How to set up a master instance?

The safest way to create a master instance is to put an empty database3 into the “master”
mode. Alternatively, one can stop any running server of an existing database, take a snapshot
of this database (i.e. make a copy of its <dbfarm>/<dbname> directory), and restart this da-
tabase to put it into the “master” mode. The snapshot is later used to initialise the replicas of
this master instance. A database instance can be put into the “master” mode only once using
the SQL command:

CALL master();

An optional path to the log record directory can be given to reduce the I/O latency, e.g. using
a nearby SSD, or where there is plenty of space to keep a long history, such as an HDD or a
cold storage location. By default, the command creates a directory /<path-
to>/<dbfarm>/<dbname>/wlc_logs to hold all logs, and a configuration file /<path-
to>/<dbfarm>/<dbname>/wlc.config to hold the state of the transaction logs, which
contains the following <key>=<value> pairs:

snapshot=<path to a snapshot directory>
logs=<path to the WLC log directory>

1 MAL (MonetDB Assembly Language) is the MonetDB internal language used to denote

physical query execution plans. www.monetdb.org/Documentation/Manuals/MonetDB/MALreference
2 GDK (Goblin Database Kernel) is the current columnar storage kernel engine of the

MonetDB 5 database. www.monetdb.org/Documentation/mserver5-man-page
3 An empty database is defined as the following: i) the database has just been created, e.g. with

monetdb create <dbname>; ii) only its SQL catalogue has been initiated; but iii) no user schema or
table has been created, and no data has been loaded to any user tables.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 29 of 53

id=<next transaction id, starts with 0>
write=<timestamp of the last transaction recorded>
state=<1: started, 2: stopped>
batches=<next available batch file to be applied>
beat=<maximal delay between log files in seconds, default=10>

A missing “snapshot” path denotes that the master has been started from an empty database.
The log files are stored as <dbname>_<batchnumber> in the “wlc_logs” directory. They
belong to a snapshot. Each WLC log file contains a serial log of committed compound trans-
actions. The log records are represented as ordinary MAL statement blocks, which are exe-
cuted in serial mode. Each transaction is identified by a unique id, its starting time, and the
responsible database user. The log records must end with a COMMIT to be allowed for re-
execution. Log records with a ROLLBACK tag are merely for off-line analysis by the DBA.

A new transaction log file is created by the master at each heartbeat (in seconds) if
there is any new transaction to log. The new log file is published (i.e. made accessible to the
replicas) after the master has been collecting transaction records for the duration of the heart-
beat. The default beat is 10 seconds, and it can be modified using the SQL command:

CALL masterbeat(<duration>);

Setting the master heartbeat to zero leads to one log file per transaction, and this may lead to
a log directory with a potentially immense number of files. For production systems, a heart-
beat of 5 minutes should balance the polling overhead in most practical situations. The log
file is shared after “duration” seconds after the first transaction record was written into it.

The final step in the lifetime of a master instance is to stop transaction logging with
the SQL command:

CALL stopmaster();

This marks the end-of-life time for a snapshot. For example, this can be particularly useful,
when planning to do a large bulk load of the database. Stopping logging avoids a double write
into the database. The database can only be brought back into the master mode using a fresh
snapshot.

One of the key challenges for a DBA is to keep the log directory manageable, be-
cause it grows with the speed in which updates are applied to the database. This calls for
regularly checking for their disk footprint, and taking a new snapshot as a new starting point
of the master so that the old log files can be removed. A master instance has no knowledge
about the number of clones and their whereabouts.

To ensure transaction ACID (Atomicity, Consistency, Isolation, Durability) proper-
ties4, the WLC log records must be securely stored on a persistent disk as an integral part of a
transaction processing. This incurs not only extra computation, but more importantly, a po-
tentially significant amount of additional I/O. The I/O pressure can be notably alleviated by
storing the database and logs files on an SSD or a Non-Volatile-Memory (NVM) device. The
NVM devices available on the ExaNeSt compute nodes are particularly suitable for this pur-
pose.

How to make a replica instance?

4 https://en.wikipedia.org/wiki/ACID

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 30 of 53

Every replica starts off with a copy of the binary snapshot identified by 'snapshot'. A fresh
database can be turned into a replica using the call:

CALL replicate(‘<mastername>’);

It will grab the latest snapshot of the master and apply all available log files before releasing
the database. Progress of the replication can be monitored using the -fraw option in mcli-
ent5.

The clone process will iterate in the background through the log files, applying all
updating transactions. An optional timestamp or transaction id can be passed to the repli-
cate() command to apply the logs until a specific moment in time or a specific transaction.
This is particularly useful when an unexpected disastrous user action, e.g. dropping a persis-
tent table, has to be recovered from. In total, the following functions are available to manage
the syncing behaviour of a replica:

-- make this instance a replica of <mastername> and
-- sync continuously when even a new log file is published.
CALL replicate('<mastername>');

-- sync all transactions until <TID> (but not included),
-- then stop automatic sync.
-- <TID> can be in the future,
-- then syncing will continue until <TID> has reached.
CALL replicate('<mastername>', <TID>);

-- sync all transactions executed before <timestamp>,
-- then stop automatic sync.
-- if <timestamp> is in the future, continue syncing
-- until <timestamp> has been reached.
-- eg use NOW() as <timestamp> brings the replica up to date
-- with the master, then pauze
CALL replicate(‘<mastername>’, <timestamp>);

-- shortcut to replicate(‘<mastername>’, <timestamp>),
-- if <mastername> is already know.
CALL replicate(<timestamp>);

-- shortcut to replicate(‘<mastername>’, <TID>),
-- if <mastername> is already know.
CALL replicate(<TID>);

-- shortcut to replicate(‘<mastername>’),
-- if <mastername> is already know.
-- continue undisturbed synchronisation
CALL replicate();

Any failure encountered during a change set replay terminates the replication process, leaving
a message in the merovingian log6.

5 https://www.monetdb.org/Documentation/mclient-man-page
6 The log file of the MonetDB database server daemon tool, called monetdbd, which is use to

manage multiple MonetDB servers. https://www.monetdb.org/Documentation/monetdbd-man-page

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 31 of 53

Auxiliary information, such as the state of the replication is stored in the configura-
tion file /<path-to>/<dbfarm>/<dbname>/wlr.config, which contains the following
<key>=<value> pairs:

master=<mastername>
batches=<next available batch file to be applied>
tag=<next transaction id to be processed>
limit=<stop replay transactions when limit is reached, -1: no stop>
beat=<maximal delay between log files in seconds, default=10>

Several additional SQL functions have been added to inspect the state of the master or a rep-
lica:

-- returns the timestamp of the last replicated transaction.
SELECT replicaClock();

-- returns the transaction id of the last replicated transaction.
SELECT replicaTick();

-- return the timestamp of the last committed transaction
-- in the master.
SELECT masterClock();

-- return the transaction id of the last committed transaction
-- in the master.
SELECT masterTick();

A running example

In the following table, we show a short replication session with a master and a replica. First,
we create a <dbfarm> to contain the two MonetDB server instances, using the command line
tools, monetdbd and monetdb7, of the MonetDB database server daemon:

create and start a dbfarm in “/tmp/lazy_rep”
$ monetdbd create /tmp/lazy_rep
$ monetdbd set port=60001 /tmp/lazy_rep
$ monetdbd start /tmp/lazy_rep

create and start an instance which will be the “Master instance”
$ monetdb create mst; monetdb release mst; monetdb start mst
created database in maintenance mode: mst
taken database out of maintenance mode: mst
starting database 'mst'... done

create and start a second instance which will be the “Replica instance 1”
$ monetdb create rep1; monetdb release rep1; monetdb start rep1
created database in maintenance mode: rep1
taken database out of maintenance mode: rep1
starting database 'rep1'... done

Now we can connect to these three instances to replicate transactions executed on
“mst” to “rep1”, as shown in the table below. Here we use MonetDB’s command line client
tool mclient. For the replica instance, we use the -fraw option to monitor the replication

7 Detailed information about monetdbd and monetdb can be found in

https://www.monetdb.org/Documentation/monetdbd-man-page and
https://www.monetdb.org/Documentation/monetdb-man-page.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 32 of 53

progress. Empty lines are added to indicate the order in which SQL queries were executed on
the two instances.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 33 of 53

Master instance Replica instance

$ mclient -d mst
sql>-- put this instance in master mode
sql>call master();
sql>call masterbeat(0);

sql>-- execute two transactions:
sql>create table tmp(i int, s string);
operation successful (3.688ms)
sql>insert into tmp values(1,'hello'),
(2,'world');
2 affected rows (2.641ms)
sql>select * from tmp;
+------+-------+
| i | s |
+======+=======+
| 1 | hello |
| 2 | world |
+------+-------+
2 tuples (1.676ms)

sql>-- add more data in mst:
sql>insert into tmp val-
ues(3,'blah'),(4,'bloh');
2 affected rows (1.778ms)
sql>insert into tmp val-
ues(5,'red'),(6,'fox');
2 affected rows (3.156ms)
sql>select * from tmp;
+------+-------+
| i | s |
+======+=======+
1	hello
2	world
3	blah
4	bloh
5	red
6	fox
+------+-------+
6 tuples (2.563ms)

$ mclient -d rep1 -fraw

sql>-- replicate ‘mst’ until TID 1:
sql>call replicate('mst', 1);
sql>select * from tmp;
% sys.tmp, sys.tmp # table_name
% i, s # name
% int, clob # type
% 1, 0 # length
sql>-- replicate the first INSERT:
sql>call replicate('mst', 2);
#Waiting for replay scheduler to stop
sql>select * from tmp;
% sys.tmp, sys.tmp # table_name
% i, s # name
% int, clob # type
% 1, 5 # length
[1, "hello"]
[2, "world"]

sql>-- replicate more transactions:
sql>call replicate('mst', 4);
#Waiting for replay scheduler to stop
sql>select * from tmp;
% sys.tmp, sys.tmp # table_name
% i, s # name
% int, clob # type
% 1, 5 # length
[1, "hello"]
[2, "world"]

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 34 of 53

sql>--do some updates on mst:
sql>update tmp set i = 3 where i = 1;
1 affected row (1.807ms)
sql>update tmp set s = 'blah';
6 affected rows (1.449ms)
sql>select * from tmp;
+------+------+
| i | s |
+======+======+
3	blah
2	blah
3	blah
4	blah
5	blah
6	blah
+------+------+
6 tuples (1.814ms)

sql>-- delete some tuples:
sql>select * from tmp;
+------+------+
| i | s |
+======+======+
3	blah
2	blah
3	blah
4	blah
5	blah
6	blah
+------+------+	
6 tuples (3.799ms)	
sql>delete from tmp where i < 4;	
3 affected rows (4.084ms)	
sql>select * from tmp;	
+------+------+	
i	s
+======+======+	
4	blah

[3, "blah"]
[4, "bloh"]
[5, "red"]
[6, "fox"]

sql>select * from tmp;
% sys.tmp, sys.tmp # table_name
% i, s # name
% int, clob # type
% 1, 5 # length
[1, "hello"]
[2, "world"]
[3, "blah"]
[4, "bloh"]
[5, "red"]
[6, "fox"]
sql>-- turn on automatic replication to
sql>-- replicate all updates:
sql>call replicate('mst');
#Waiting for replay scheduler to stop
#wlr.process:'/tmp/lazy_rep/mst/wlc_logs/
/%s_000000000004' can not be accessed
#wlr.process:'/tmp/lazy_rep/mst/wlc_logs/
/%s_000000000005' can not be accessed
sql>select * from tmp;
% sys.tmp, sys.tmp # table_name
% i, s # name
% int, clob # type
% 1, 5 # length
[1, "hello"]
[2, "world"]
[3, "blah"]
[4, "bloh"]
[5, "red"]
[6, "fox"]

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 35 of 53

| 5 | blah |
| 6 | blah |
+------+------+
3 tuples (2.615ms)

sql>--clear the complete table:
sql>delete from tmp;
2 affected rows (2.016ms)
sql>select * from tmp;
+---+---+
| i | s |
+===+===+
+---+---+
0 tuples (2.832ms)

sql>-- test stopping master:
sql>create table tmp70(i int, s string);
operation successful (1.710ms)
sql>insert into tmp70 values(1,'hello'),
(2,'world');
2 affected rows (1.507ms)
sql>select * from tmp70;
+------+-------+
| i | s |
+======+=======+
| 1 | hello |
| 2 | world |
+------+-------+
2 tuples (3.983ms)

sql>call stopmaster();
sql>insert into tmp values(40,'after be-
ing stopped');
1 affected row (0.825ms)
sql>select * from tmp;
+------+---------------------+
| i | s |
+======+=====================+
| 40 | after being stopped |
+------+---------------------+
1 tuple (1.861ms)

sql>-- this instance cannot be put into
sql>-- master mode again
sql>call master();
WARNING: logging has been stopped. Use
new snapshot

sql>-- deletions auto. replicated
sql>select * from tmp;
% sys.tmp, sys.tmp # table_name
% i, s # name
% int, clob # type
% 1, 4 # length
[4, "blah"]
[5, "blah"]
[6, "blah"]

sql> auto. replication continues:
sql>select * from tmp;
% sys.tmp, sys.tmp # table_name
% i, s # name
% int, clob # type
% 1, 0 # length

sql>-- before master is stopped:
sql>select * from tmp70;
% sys.tmp70, sys.tmp70 # table_name
% i, s # name
% int, clob # type
% 1, 5 # length
[1, "hello"]
[2, "world"]

sql>-- after master is stopped:
sql>select * from tmp70;
% sys.tmp70, sys.tmp70 # table_name
% i, s # name
% int, clob # type
% 1, 5 # length
[1, "hello"]
[2, "world"]

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 36 of 53

5.3 Next	steps	
As of May 2017 the experimental code of lazy logical replication has been made open-source
in the development branch of the MonetDB source code.

 One of the next steps is performance benchmark. However, it is not a simple task,
since there is no standard benchmark for this. Designing a benchmark to produce meaningful
results will be a big challenge itself.

Features to be considered beyond the alpha release are for instance:
● Selective replication: a full replication may not always be necessary. To minimise the

replication overhead, one would want to partition the log files based on some predi-
cates, so that replication can be done per partition.

● Fine-grained access control: on the master instance, one should be able to define
which replica is allowed to replicate which parts of the database (this is one form of
selective replication), and with what type of permission, i.e. if the replicated data are
read-only or read-write.

● Log shipping: the current implementation relies on shared file systems for the repli-
cas to read the log files produced by the master. In a next step, we want to ship the
log and snapshot files between different file systems to improve local access speed
and improve scalability.

● Automated replication management: the MonetDB database server daemon tool suite
needs to be extended to facilitate automated management of master/replicas. For in-
stance, an easier way to create and share the snapshots, which currently requires
much manual work.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 37 of 53

6. Administration	and	Testing	Tools	

6.1 Marvin	1.0	-		a	database	profiler	for	MonetDB	
[Contributed by MDBS]
A key issue in the road towards a high performance application is to understand where and when
resources are spent. This information can be obtained using different tools and at different levels
of abstraction. Fine-grained, platform specific information can be obtained using existing profil-
ers, such as valgrind8, or hardware performance counters. However, for database management
systems, it is equally important to have the profiling information at the coarser-grained level of
relational algebraic operators, which are the basic building blocks of an SQL query.

Profiling SQL queries and algebraic operators is a highly specific and completely differ-
ent task than profiling HPC applications, therefore, MonetDB comes with a set of its own pro-
filing tools9, geared at understanding the internal working, scheduling and potential resource
bottlenecks raised by running queries. They are all based on a profiler event stream produced
by a MonetDB database server upon request.

Marvin is a new tool in the MonetDB profiler family, developed under the context of
ExaNeSt. Its back end is based on a renewed version of the profiler event stream produced by
a MonetDB database server. Its front end is an interactive graphical web interface, designed
and implemented using modern web front end tools, such as D3 and AngularJS. The architec-
ture of Marvin is designed in such way that it can be easily extended/adapted to accommodate
changes in the event stream produced by the database server, e.g. if the database server adds
more information to the event stream.

In the previous deliverable D4.2 (Section 5.4), we have described the initial design
and plan for implementation of Marvin. By now, we have finished developing Marvin 1.0,
i.e. all planned features for profiling a stand-alone MonetDB server. In this section, we i) give
a quick recap of the architecture of Marvin; ii) present the main features of Marvin 1.0 with
screenshots; and iii) wrap up with plan for Marvin 2.0.

6.1.1 Architecture	

The architecture of Marvin is shown in Figure 6.1.

First, at the bottom layer of Figure 6.1, the MonetDB database server has been ex-
tended to produce a stream of profiling events. The events can come either as ASCII text or
in a JSON structure, and write it on a TCP socket. The raw JSON stream contains the same
information as the single-line format10, which includes wall-clock time, thread ID, MonetDB
internal algebra statement (i.e. written in the MonetDB internal language MAL11) being exe-
cuted and its status (“start” or “done”), estimated or actual execution time, number of disk
blocks read/written, cumulative memory consumption, etc.

8 www.valgrind.org
9 www.monetdb.org/Documentation/Manuals/MonetDB/Profiler
10 www.monetdb.org/Documentation/Manuals/MonetDB/Profiler/TraceFormat
11 www.monetdb.org/Documentation/Manuals/MonetDB/MALreference

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 38 of 53

Then, the Marvin back end engine (written in Python) will pick up the raw JSON
stream and transform it, by performing various filtering and aggregation operations and in-
jecting timing information, into the JSON format understood by the Marvin frontend. One of
the main computations done here is the lift time of each variable. The Marvin backend engine
will find for each variable (representing memory regions) when it is created, when it is used,
and when it is destroyed. In addition, the Marvin backend engine will filter out the excess
information in the raw JSON stream that is not consumed by the Marvin frontend.

Finally, the Marvin front end visualises the information in the Marvin JSON stream.
The frontend GUI is built using the AngularJS12 framework, and the D3.js graphic library13.
Next to the dynamic graphic interface, an important feature of the Marvin GUI is being inter-
active. The JSON profiling events are streamed. Therefore, Marvin can continuously monitor
the JSON stream to update all graphs in the GUI during the execution of a query.

Figure 6.1. architecture of Marvin 1.0

12 https://angularjs.org
13 https://d3js.org

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 39 of 53

6.1.2 Main	features	

The screenshots below show the main features of Marvin. For each feature, we give a short
description after the screenshot.

1. Get profiling events

This is the initial GUI of Marvin. In the menu bar at the top, there are two ways to get profil-
ing events:

● “Connection”: connect to a running MonetDB database server to execute queries and
acquire their profiling data; or

● “Upload Trace”: load query profiling data that have been saved earlier.

This is the interface to connect to a running database.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 40 of 53

This is the interface to upload existing profiling events. The raw execution trace of each
query is stored in a separate JSON file. One can upload multiple JSON profiling files here.
Note that, the JSON files only contain profiling data, no query results.

2. Run/pause/resume query

If Marvin is connected to a running MonetDB database server, one can execute queries using
the “Query Executor” widget. Each executed query will be saved in the query list. One can
also give each query a name. Note that, because Marvin retrieves all query execution infor-
mation from the database server, all queries that have been executed on the server will be
listed here, including those executed by other client connections.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 41 of 53

One can stop, or pause/resume a long running query.

In the “Query results” widget, one can view the query results in tabular format. In the menu
bar, a new item “Queries” is shown with the number of all queries that have been executed on
the database server (i.e. including those executed by other client connections). However, one
can only view the results of queries that have been executed in the current Marvin session.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 42 of 53

By clicking on the menu item “Queries”, one can view the list of “Available Queries”:

● “Pipe” shows with which set of optimisers the query was executed. In MonetDB
terms, each such set of optimisers is called an “optimiser pipeline”, because the opti-
misers are applied in a pipelined fashion.

● “#Instr” shows how many MAL statements were executed for this query
● “Status” is the status of the query
● “Download” allows one to save the profiling data of this query in a JSON file on the

local disk.
● Finally, with the checkboxes at the left side, one can select queries to “Remove”.

3. MAL Gantt Chart

The “MAL Gantt Chart” gives an overview of the execution of a query:
● The x-axis shows the elapsed query execution time in seconds.
● The y-axis shows the activities of each thread over time: which MAL statement did it

execute, and from when to when.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 43 of 53

● One can zoom in/out in the gantt chart to have a better view of the executed MAL
statements at each time stamp.

● When hovering the mouse of a coloured block, the corresponding will be shown
● Above the gantt chart,

○ the “Filter…” field at the left-side allows one to filter the displayed MAL
statement, e.g. show only the grouping operators.

○ the total number of executed MAL statement is displayed at the right-side.
● Below the gantt chart, the colours legenda is shown

○ Each colour box represent one distinct MAL statement, identified by <mod-
ule name>.<function name>.

○ The number inside a colour box is the total number of this MAL statement in
the query execution.

○ Under each MAL statement is the total execution time of all occurrences of
this statement, and its percentage of the total query execution time.

4. MAL Statement Table

The “MAL Statement Table” shows all MAL statements that have been executed for the se-
lected query, ordered by the time when a statement is finished. MAL is an extremely simple
language. It consists of single line statements, and the result of each statement is always as-
signed to a variable.

When hovering the mouse over a MAL statement, the incoming arrows show where
the inputs of this statement come from, while the outgoing arrows show where the results of
this statement will be used.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 44 of 53

The MAL Statement Table can easily contain hundreds or even more lines. One can scroll
through the long list, or filter out the desired statements.

5. Memory Footprint Chart

The “Memory Footprint Chart” shows MonetDB’s memory consumption during the execu-
tion of a query:

● The x-axis shows the elapsed query execution time in milliseconds.
● The y-axis shows the consumed memory in MBs
● The blue line shows the memory consumed by the “persistent” data in the database.
● The red line shows the memory consumed by the “temporary” data, which are the in-

termediate data generated during the query execution.
● The black line shows the total memory consumption (“persistent” + “temporary”)
● When hovering the mouse over the chart, a text box is displayed with the amount of

“persistent”, “temporary” and “total” memory at a particular point in time.

The chart displayed here shows the memory consumption of MonetDB during the execution
of the TPC-H query 1. This is a typical behaviour of MonetDB:

● At the beginning of the query execution, the blue line grows fast, because all neces-
sary persistent data are memory mapped to be processed.

● During the query execution, the blue line gradually drops, because once the persistent
have been processed and no longer needed, they are memory unmapped.

● The red line gradually grows during query execution when more MAL statements

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 45 of 53

have been computed and their results are still needed.
● The red line gradually drops in a later stage of the query execution, when more and

more intermediates have been consumed and no longer needed.
6. Variable Lifetime Chart

The “Variable Lifetime Chart” shows the lifetime of each MAL variable:

● Again, the blue colour is for variables holding persistent data, while the red colour
indicates variables holder temporary data.

● For each variable, the thin line in full red/blue colour shows its full lifetime, from its
creation to when it is destroyed. The exact times and duration are shown in the text
box, when hovering the mouse over a variable, together with the size of this variable.

● The red/blue colour boxes in a lighter shade show when a variable is actually used.
Overlapping boxes indicate that the variable is being used by multiple MAL state-
ments at that time.

The chart displayed here only shows a small number of variables. Similar to the “MAL
Statement Table”, the list of variables can be long, and one can scroll through the list to ex-
amine all variables.

 For this particular query, when one scroll through the list from top to bottom, one
would be able to observe that most persistent variables live and are used at the left side of the
chart (i.e. at the beginning of the query execution time), while increasingly more temporary
variables are at the midden and right side of the chart. This matches the information displayed
in the “Memory Footprint Chart” above.

 Another observation that can be made from this chart (and the variables not visible in
this screenshot) is that variables, both persistent and temporary, generally live much longer
life in an idle state in the memory than the time they are actually used. Thus the “Variable
Lifetime Chart” shows us the opportunities to reduce the memory footprint of MonetDB for a
given query. This is on our todo list for future MonetDB improvements.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 46 of 53

6.1.3 Next	steps	

The majority of the development work for Marvin 1.0 has been finished. We will continue
maintaining and improving the software. The license for Marvin is not decided yet, but for
ExaNeSt partners, it is being provided for free.

 Marvin 1.0 focuses on profiling a single MonetDB instance, while in ExaNeSt we
will run clusters of MonetDB instances. So Marvin 2.0 will be a database profiler for distrib-
uted MonetDB. Therefore, extensions and/or redesigning in all layers of Marvin will be re-
quired:

● At the back end layers (i.e. the MonetDB database server layer and the Marvin back
end layer), we will examine two options: extend the database servers to exchange the
raw JSON stream with each other, or extend the Marvin back end with the ability to
communicate with multiple MonetDB servers.

● At the front end layer, the GUI needs to be redesigned to incorporate information of
multiple MonetDB instances. The main challenge here is how to visualise the data in
a concise yet informative way.

6.2 Monitoring	System	
[Contributed by INFN]

The requirements that the monitoring system of the ExaNeSt prototype should satisfy have
been identified in D.4.1, and the architecture of the monitoring system, together with the pro-
posed tools, have been described in D4.2. Here, after a brief summary of such framework, we
report on the progress we made on the configuration and the development of the monitoring
tools..

6.2.1 Development	of	the	monitoring	architecture	

The main requirements for the monitoring system, detailed in the previous deliverables, are:
● Inform the administrator about the status of the nodes composing the parallel file sys-

tem and keep track of the internal communications among the nodes, i.e. identify
nodes, or file system processes within a node, that got stuck for some reasons during
the communications with other nodes.

● For both metadata servers and storage servers, an overview page should show the
general status of the nodes. More detailed pages should provide information about
single nodes, with reports on disk space usage, data throughput, disk performance on
read and write operations, number of work requests and time needed to accomplish
them.

● Both aggregated and detailed statistics should be available for metadata operations
(i.e. create, stat, set/get attributes, set/get ACL) and for storage operations (read,
write, etc.).

● Uers should be able to select time ranges and to visualize averaged quantities.

Keeping these demands in mind, we propose a monitoring infrastructure which builds on the
reliable experience acquired in our datacenter [MIC01] and on a series of widely used open
source tools which harmonize with each other nicely, namely:

● Telegraf (https://docs.influxdata.com/telegraf/), a plugin-driven server agent for col-
lecting metrics and sending them to a variety of other datastores (in our case, In-
fluxDB). Telegraf is open-source and licensed under the MIT License, and it is easy
to install and maintain. A wide choice of input and output plugins is already available
and makes it easily extendable.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 47 of 53

● InfluxDB (https://influxdata.com/), an open-source time series database, to be used as
a persistency layer for the metrics collected with Telegraf. InfluxDB is easy to install
and maintain, and does not require external dependencies. Moreover, it can scale
horizontally (in the enterprise version) and High Availability can be configured. In-
fluxDB is also released with the MIT License.

● Grafana (http://grafana.org/), an open-source application to plot via web time series.
It is very flexible in creating dashboards and it has native integration with InfluxDB
(among others). It is a multi tenant application with LDAP integration for authorisa-
tion. The open-source version is provided with an Apache2.0 License.

The monitoring architecture is sketched in the following Figure 6.3, and it is currently in
place in our testbed at INFN-CNAF, where we are testing its scalability and working on the
development of the dedicated sensors.

Figure 6.3. Monitoring System Architecture.

On each node of the ExaNeSt platform, dedicated sensors (both via plugins already available
in the literature and via scripts developed around the native BeeGFS TUI) extract relevant
metrics, which are collected and injected into InfluxDB by Telegraf, and plotted with a series
of pre-defined dashboards using Grafana, where different end-users have access to different
pages.
An example screenshot of the Grafana dashboard for the data throughput (for read and write
storage operations) is shown in Figure 6.4.

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 48 of 53

Figure 6.4. Sample screenshot taken from the Grafana dashboard of the monitoring system

of the testbed installed at INFN-CNAF - this page is monitoring disk and network usage

.

6.3 Experiment	automation,	stress-load	and	fault	injection	tools	
[Contributed by INFN]

In this section, we describe a tool framework for performance stress-testing (storage traffic
generator), and a fault injection framework to assist in the validation of performance and re-
silience targets. An important goal of the workload generator is to be able to initiate instances
of different workload types from within virtual machines (VMs). Secondly, we support a set
of different workload types that target different aspects of the system, for example, storage,
networking infrastructure, memory, and processing resources. Additionally, there is the need
to automate the initiation of realistic workloads, such as queries to databases. Among the key
goals of the fault generator tool is the ability to replay system faults which are the effects of
high load and congestion. Such system faults may be packet drops, packet re-ordering, packet
duplication, packet corruption, and increased packet delay. Both tools offer the ability to
specify the time when a workload instance or fault will be initiated. For the case of faults
there is also provision to control their duration. It is important to note that the supported
workload types are not fixed and new ones can be added in order to extend its functionality.
Moreover, workload initiation is dynamically controlled through a simple configuration file
that allows for different evaluation scenarios with different workloads.

6.3.1 VM	Load	Injection	Tool	(VLITO)	

The goal is to support a wide range of workload types that may also require communication
among virtual machines (e.g. MPI). A workload scenario can be described through three con-
figuration files:

a) host machine (HM) configuration,
b) virtual machine configuration, and
c) workload configuration.

The HM configuration file is used to describe the host machines that will be involved in the
workload scenario for hosting VMs. Adding or removing an entry from that file, adds or re-

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 49 of 53

moves a new HM respectively. The VM configuration file describes the VMs that will be in-
volved in the workload scenario and finally, the workload configuration describes instances
of workloads, along with workload specific parameters. Instances of the aforementioned sce-
narios have been described in detail in ExaNeSt Deliverable 4.2.

The tool has been released to the partners through the ExaNeST git repository, and has been
tested on the Juno-based prototype. We now describe the prerequisites for installing and us-
ing this tool, and also the configuration/setup actions that it performs on each HM involved.

Linux software packages required:

bridge-utils, qemu-system-aarch64, ssh-keygen.

Kernel configuration flags, to be enabled on each of the host machines:

CONFIG_BRIDG, CONFIG_VIRTIO, CONFIG_VIRTIO_BLK, CONFIG_VIRTIO_PCI,
CONFIG_VIRTIO_MMIO, CONFIG_KVM, CONFIG_TU.

One of the HMs, the one where VLITO is run, is the root host machine. Different from all
other HMs, on the root HM, three files must be available that will be used for creating guest
OS for each VM instance installed:

a) template root file system image: cloned for each new VM installed
b) template kernel image: used for booting the guest OS of each VM
c) template initial ramdisk image.

The names of these images are specified through PATH/configs/input.conf where PATH is
the directory where VLITO scripts reside.

On each HM that is involved in the workload scenario, configuration/setup actions need to be
executed. This setup is cleaned upon HM reboot, and in that sense it constitutes soft state.
The setup consists of:

a) adding a bridge
b) attaching each VM’s back-end of the virtual interface to the bridge
c) enabling IPv4 forwarding (/proc/sys/net/ipv4/ip_forward) for forwarding packets re-

ceived on a HM’s interface to the bridge (packets that target a specific VM)
d) a routing table rule to guide packets that target a VM to pass through the bridge
e) routing rules for each VM IP that resides on a remote HM to use that HM as a gate-

way. If VMs on a HM are organized in a single subnet, the routing rules required are
significantly reduced.

Overall, the current release of the VM load injection tool implements the functionality de-
scribed in ExaNeSt deliverable D4.2. For the follow-up period in the ExaNeST project, we
are considering improvements to address limitations that we have experienced while using
the tool. First, with the current version of the tool to support a new workload type, all VM
root file system images need to be updated manually. Another limitation is that currently, the
workload scenario specification does not have the notion of time, that is, there is no control
over the starting time and the duration of a specific workload instance. The tool needs also be
tested with the Linux kernel configuration available on the more recent Trenz-based proto-
type. Specifically, we need to verify that the kernel configuration required by VLITO (mostly
for providing virtualization support) is fully compatible with the kernel configuration re-
quired for loading the modules that support the Unimem architecture and the libraries made
available to user space applications.

6.3.2 ExaNeSt Network Fault Injection Tool (EN-FITO)	
As described in ExaNeSt deliverable D4.2, our goal is to provide functionality similar to that
of NetEm in the Linux kernel. Netem is quite flexible in terms of fault emulation and allows

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 50 of 53

emulating the following faults with respect to packets: drops, corruption, reordering, duplica-
tion, and increased delay. Netem is based on Linux TC filtering functionality which assumes
the presence of an IP header for either filtering based on specific TCP/IP header fields or for
determining offsets for moving within different parts of the packet. In the target architecture
however, there will be no IP layer so another filtering mechanism is needed. Moreover, pack-
ets are passed to Linux’s traffic control after they are processed by TCP/IP stack and before
they are passed to the NIC’s driver. ExaNeSt packets however, do not follow this path and
thus modifying Netem is not possible.

Although the required functionality may seem straightforward, emulating the aforementioned
network faults is not trivial due to the tight coupling of this tool with several key components
of the target ExaNeSt’s system. The system components with which there is strong depend-
ence are:

a) Hardware blocks that handle communication at a higher level, such as, ExaNeSt
packetizer, DMA engine, and mailbox.

b) Hardware blocks that handle communication at a lower level, such as, the block that
performs the actual transmission over the physical serial links.

c) Components that realize the interconnect network including switching and/or routing
logic.

Another complication with respect to the target network fault emulator is that at this stage of
the ExaNeSt project, some details regarding the aforementioned components are not yet final-
ized. For this reason, some implementation details of the target tool might change in future
versions. It should be noted though that these modifications are expected to concern only the
implementation details, without limiting the tool’s functionality.

The following figure illustrates the network path as perceived by the EN-FITO tool.

Figure 6.5. Network path as perceived by the EN-FITO fault injection tool.

As shown in Figure 6.5, two compute-nodes are connected together through logic that routes
packets among boards, denoted as ExaNeSt router. Within each node (board), there are sev-
eral hardware blocks that may generate ExaNeSt packets (with ExaNeSt referring to the type
of network that interconnects all nodes and networking logic together). Currently only the
ExaNeSt packetizer is able to generate ExaNeSt packets (EPs for the rest of the document)
that can be delivered to a node’s virtual mailbox. The packets generated by the aforemen-

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 51 of 53

tioned components pass through a switching logic (denoted as ExaNeSt switch) and are fi-
nally handled by a block that performs transmissions over a serial link. Then, the packets will
be handled by a network device that performs routing (denoted as ExaNeSt router) that will
deliver the EP to the node specified within EP’s header. The final part of a packet’s path is
the component where the packet is written.

The current version of EN-FITO is configured through a simple input file describing the fault
scenario to be actuated. The following table provides an example.

Fault
Type

Ratio/

Delay
Value
(usec)

Source
Node

Destina-
tion Node

Start
TS

(msec)

End TS

(msec)

Drop 15% 2 3 100 200

Delay 120 1 3 0 200

Corrupt 12% 1 3 0 300

Note that the current EN-FITO implementation is aimed at interfering with the traffic of ap-
plications that run natively on host machines, that is, traffic that is not generated from within
virtual machines. In the next versions of EN-FITO, we plan to enrich the configurations that
are provided to it so specific faults can target traffic generated from within specific virtual
machines.

The tool operated under the following operating environment assumptions:
a) Every node involved in the simulated scenario should have the same copy of the con-

figuration file
b) To allow for different network faults to start at the same time across different nodes,

all nodes involved in the simulated scenario should have Network Time Protocol
(NTP) available. As also noted in [http://www.ntp.org/ntpfaq/NTP-s-algo.htm], the
typical accuracy on the Internet ranges from about 5ms to 100ms so, assuming a 100
millisecond accuracy is a reasonable starting point. We plan to explore the option of
using a local NTP server for allowing more fine-grain control of timestamps.

c) The current version of EN-FITO comprises a plugin within the user-space library that
exposes the ExaNeSt packetizer hardware block to user space applications. This
means that at the application level, there is no control over the ExaNeSt network
header and possibly footer that is added to the packet and thus, there is no way to cor-
rupt header or checksum’s content (checksum for error detection). To enable corrupt-
ing packets in this way, the hardware block that computes checksums should offer
EN-FITO the capability to selectively corrupt packets. Additionally, if this hardware
block is virtualized by offering a different virtual channel/interface per process, it
should support the ability to corrupt the next-packet-to-transmit on a specific chan-
nel/interface.

Currently only the ExaNeSt packetizer allows the transmission of ExaNeSt packets and its
proper functionality is currently being tested. However in order to allow the development of
EN-FITO to take place in parallel, two hardware blocks that are currently available on the
Trenz-based prototype are exploited:

a) Virtualized mailbox, which implements up to 64 Hardware FIFOs. Each FIFO is ac-
cessible through the corresponding mailbox interface (MIF).

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 52 of 53

b) Axi-Packetizer The basic function of this block is to initiate an atomic packet to a
user-defined destination, carrying user-defined data.

The user-space library through which the AXI packetizer is exposed generates an ExaNeSt
Packet (EP) by adding a header and a footer (consistent with the current EP packet format) to
the data that are to be transmitted-written to a specific node’s mailbox. As an example, as-
sume that node 2 needs to send N consecutive messages to node 3. A process running on
node 2 will pass the data for each of the N packets to the AXI packetizer, and will denote as
destination the virtual mailbox of a process running on node 3. Then the library, having
parsed the EN-FITO configuration file, will randomly pick 15% of the packets transmitted
within time window [100, 120] msec to be dropped.

6.3.3 Checkpoint-restart	simulation	suite	

[Contribution of INFN]

Given that in typical HPC applications the most demanding operation in terms of stressing
the storage system is represented by checkpoint and restart, we developed a synthetic MPI
application that simulate precisely this activity.

This checkpoint-restart simulator was released in the Gitlab of the ExaNeSt project. The ap-
plication, which is available in both a C++ and a Python version, launches a number of MPI
processes, each one generating an array of a specified size. When all the processes are done
(MPI_Barrier), they all start writing the array on a binary file to disk, and then perform fsync
after flushing file. This step is intended to simulate a “checkpoint” step, in which a consider-
able amount of data in RAM (one array per process) is dumped on the file system. Then, the
arrays are read from the previously written file, so to simulate the “restart from latest state”
step.
The code allows to repeat writing and reading operations for a desired number of iterations in
order to compute a meaningful average time.
The suite is parametrized and the number of MPI processes, the size of array handled by each
process, the frequency of the store/load operations, the path where files reside can be config-
ured..

The simulator is a test bench to simulate real case scenarios is HPC applications before that
real use cases can be run on the ExaNeSt prototype.

7. Conclusion	
[Section contributed by FHG]

In this deliverable, we presented the implementation of the ExaNeSt storage architec-
ture. The ExaNeSt hardware design places the storage closer to the compute elements than
traditional storage cluster based systems. This requires a number of software changes when
handling the designed hardware architecture.

We described an extended Linux I/O path, with an optimized implementation for
memory-mapped I/O called dmap. Then we presented the extensions to the distributed paral-
lel file system BeeGFS, which include metadata mirroring, management service high-
availability and an extended BeeGFS-on-demand cache layer. Afterwards, we showed the
implementation of a generic API remoting framework, and its adaption for an RDMA device.
In the next section, the implementation of an asynchronous replication mechanism for the
column-store database MonetDB was described. The lase section introduces a database pro-
filer, useful for maintaining performance of SQL queries, and also describes the implementa-

D4.3 Implementation Notes for the Storage and Data Access Infrastructure – version 1.0

© 2017 ExaNeSt Project Consortium Proprietary page 53 of 53

tion of a monitoring system for the ExaNeSt prototype as well as a way to automate stress-
test experiments and network tests.

The software developed in Task 4.3 which is presented in this document is an integral
part of the ExaNeSt project, where it is needed as a data access infrastructure. It provides
ways for software applications to make use of the newly developed hardware and especially
its storage components. It will be useful even outside the ExaNeSt project, for example in the
HPC community, as well as for data analysts and the big data marked.

The components implemented as illustrated in this deliverable will be subject to further
optimization, which will be done by the WP4 partners in Task 4.4.

8. References	
[EHA12] Brian Van Essen, Henry Hsieh, Sasha Ames, and Maya Gokhale. 2012. DI-MMAP:
A High Performance Memory-Map Runtime for Data-Intensive Applications. In Proceedings
of the 2012 SC Companion: High Performance Computing, Networking Storage and Analysis
(SCC '12). IEEE Computer Society, Washington, DC, USA, 731-735.

[EHA15] Brian Essen, Henry Hsieh, Sasha Ames, Roger Pearce, and Maya Gokhale. 2015.
DI-MMAP--a scalable memory-map runtime for out-of-core data-intensive applications.
Cluster Computing 18, 1 (March 2015), 15-28.

[FIO] FIO: Flexible I/O Tester. https://github.com/axboe/fio

[MIC01] D. Michelotto, S. Bovina “The evolution of monitoring system: the INFN-CNAF
case study”, Proceeding of the The 22nd International Conference on Computing in High
Energy and Nuclear Physics, CHEP 2016

[TPCH] TPC Benchmark H (TPC-H). http://www.tpc.org/tpch/

[ETCD] Etcd – A distributed, reliable key-value store for the most critical data of a distrib-
uted system. https://coreos.com/etcd/

[OO14] D. Ongaro and John Ousterhout “In Search of an Understandable Consensus Algo-
rithm”, In Proceedings of the 2014 USENIX Annual Technical Conference (USENIX ACT
14). USENIX Association, Philadelphia, PA, USA, 305-319

