ExaNeSt Project

- Interconnects
 - Low-latency, unified compute & storage traffic
- Storage
 - Fast, distributed, in-node non-volatile memory
- Applications
 - Real applications: scientific computing, data analytics
- System Packaging Technology
 - Compact, fully-immersed liquid cooling technology

ExaNeSt Prototype based on QFDB

- 4 Xilinx Zynq Ultrascale+ MPSoCs (4 64-bit ARM cores) + 64 GB DRAM + 250 GB SSDs
- ~80 liquid-cooled QFDBs in final prototype

Minimizing Communication Latency

- Network Interface
 - Virtualized 8-channel DMA engine
 - Virtualized 16-channel ARM I/O MMU (SMMU)
- Global Virtual Address Space
 - Addresses are translated at destination node’s SMMU
 - No page pinning, no extra copies at destination
- User-level Initiated RDMA
 - Kernel bypass to reduce latency

End-to-end RDMA flow

- 2 μsec RDMA latency (8x speedup wrt. kernel-initiated transfers)
- virtualized user-level access to packetizers and MBOXes
- Next items
 - porting MPI
 - new low-latency ExaNeSt interconnect
 - fast completion notification & congestion control

Evaluation

Conclusion and future work

- Commercial Zynq Ultrascale+ MPSoC boards (Trenz)
- Interconnect: Xilinx Kintex UltraScale used as central AXI switch, providing 10 Gb/s SFP+ links

ExaNeSt (H2020-ICT-671553), Horizon 2020 Program