Challenges and Opportunities in Exascale-Computing Interconnects

Manolis Katevenis and Nikolaos Chrysos
FORTH-ICS and Univ. of Crete, Greece

1st AISTECS Workshop, 18 January 2016, Prague, Czech Republic
Outline

• Warehouse-scale datacenters and supercomputers
• Traffic characteristics in commercial datacenters
• Efficient congestion control: an old, unresolved problem
• Multipathing: benefits & issues
• RDMA: optimizing data copying
• Global virtual address space & routing
Datacenters: big-data stores of information society
What is a “datacenter”

A rack: 25-40 servers

Enterprise: a-few-hundred servers

Commercial datacenter:
Many-thousand servers
Supercomputers have similarities with datacenters

- Large scale installations
- Exploit massive parallelism
- ... but designed to perfection
 - Custom one-off hardware vs. the economies of scale that rule in datacenters
Supercomputers have similarities with datacenters

- Large scale installations
- Exploit massive parallelism
- ... but designed to perfection
 - Custom one-off hardware vs. the economies of scale that rule in datacenters

TOP500 list as of Nov. 2015

1. Tianhe-2 (MilkyWay-2) : 54.9 PFLOP/S @ 17.8 MW
2. Titan - Cray XK7 : 27.1 PFLOP/S @ 8.2 MW
3. Sequoia - BlueGene/Q : 20.1 PFLOP/S @ 7.9 MW
Supercomputers have similarities with datacenters

- Large scale installations
- Exploit massive parallelism
- ... but designed to perfection
 - Custom one-off hardware vs. the economies of scale that rule in datacenters

TOP500 list as of Nov. 2015

1. Tianhe-2 (MilkyWay-2) : 54.9 PFLOP/S @ 17.8 MW
2. Titan - Cray XK7 : 27.1 PFLOP/S @ 8.2 MW
3. Sequoia - BlueGene/Q : 20.1 PFLOP/S @ 7.9 MW

Google’s power estimated at 40 PFLOPS in 8 Datacenters (2012)
Computing power must scale together with society needs.
Data movement is a massive wall in the road to exascale

The Cost of Data Movement

![Graph showing the cost of data movement across different computational levels.]

Cost of a FLOP

Courtesy: Horst Simon, Lawrence Berkeley National Laboratory
Outline

• Warehouse-scale datacenters and supercomputers

• Traffic characteristics in commercial datacenters

• Efficient congestion control: an old, unresolved problem

• Multipathing: benefits & issues

• RDMA: optimizing data copying

• Global virtual address space & routing
Flow sizes in commercial datacenters

- 80% of the flows < 30 KB
- 95% of bytes in 4% of flows > 35 MB
- Many 10s MB flows are rare, but carry 20-40% of the bytes

Sources of large flows: storage/VM migration/checkpointing..
Online data intensive (OLDI) app’s working on big-data

1. User query
2. Master: partitions request
3. Workers: compute on local to data

Katevenis & Chrysos - AISTECS 2016 - Exascale-Computing Interconnects
Online data intensive (OLDI) app’s working on big-data

5: User gets response

4. Master: aggregate partial results
Partial results are usually small
User is best satisfied if all partial results arrive on time

1. Master: waits all partial results; e.g. if (i) Flow delay: mean 50 ms, 99-th %tile 1 sec and (ii) a request spawns to 100 workers: then: 1 sec delay on 63% of the responses

2: User response
User is best satisfied if all partial results arrive on time

Either response quality or response time worsens if some flows delay a lot
Compute close to data & flows are small ..but netw. suffers

fan-in congestion
“No problem: my network logs show 50% utilization”
“No problem: my network logs show 50% utilization”

But bursty large flows & fan-in → strong fights @ short time scale
“No problem: my network logs show 50% utilization”

But bursty large flows & fan-in → strong fights @ short-time scale
Big problem: buffers will backlog

But bursty large flows & fan-in \rightarrow strong fights @ short time scale
Big problem: buffers will backlog

Queue up everything? → backlog & latency

Buffer
Big problem: buffers will backlog

What if we drop? Small latency-sensitive flows may wait for S/W (TCP) timers → 100’s ms latency in Linux
Outline

• Warehouse-scale datacenters and supercomputers
• Traffic characteristics in commercial datacenters

• **Efficient congestion control: an old, unresolved problem**
• Multipathing: benefits & issues
• RDMA: optimizing data copying
• Global virtual address space & routing
Network congestion: an old unresolved problem

• Effects
 – Unacceptable latencies
 – Productivity (throughput) reduction

• Need to live with it (hard)
... or take measures
Network congestion: an old unresolved problem

• Effects
 – Unacceptable latencies
 – Productivity (throughput) reduction
• Need to live with it (hard)
 ... or take measures

• TCP congestion control is universal ... but not good enough
 – Conservative rate (window) control to ensure stability
 • converges to approximately fair rates after several RTTs
 – Cannot avoid backlogs & drops: recovery w. sluggish S/W retransmissions
 • bad for latency-critical flows
 – Long lat. (10’s μsec) & many copies at hosts
Network congestion: an old unresolved problem

• Effects
 – Unacceptable latencies
 – Productivity (throughput) reduction
• Need to live with it (hard)
 ... or take measures

• TCP congestion control is universal ... but not good enough
 – Conservative rate (window) control to ensure stability
 • converges to approximately fair rates after several RTTs
 – Cannot avoid backlogs & drops: recovery w. sluggish S/W retransmissions
 • bad for latency-critical flows
 – Long lat. (10’s μsec) & many copies at hosts: can do much better w. RDMA
Multistage interconnection network: abstract view

- One shared queue per switching element
- Multiple paths to destination
First measure: link-level flow control to avoid packet drops

- Packets held in upstream buffer when downstream buffer full
 - Lossless networks: CEE (pause-based), Infiniband (credit-based)
First measure: link-level flow control to avoid packet drops

- Packets held in upstream buffer when downstream buffer full
 - Lossless networks: CEE (pause-based), Infiniband (credit-based)
- New problems
 - HOL blocking: nobody in Q can move because head packet is blocked
 - Many network buffers fill up not only at hotspot
 - Bad for latency-critical flows
A “high-end” accompanying measure: per-destination Qs

• Separate queues inside the network for every destination (Katevenis 1987, Sapunjis & Katevenis 2003)
 – Perfect isolation if link-level flow control stops only the queues of misbehaving flows (destinations)
 – Non-congested flows progress at full speed

• But cost of switching elements grows with network size
A sometimes affordable alternative: buffer reservations

- At high loads, reserve network buffer resources before injecting packets (Chrysos & Katevenis 2006, IBM 100G server-rack fabric 2014)
 - Packets wait at virtual output (per-dest) queues in front of network
- Shared in-fabric queues never exert backpressure
 - No HOL blocking and no backlogs
- But complicated schedulers & per-dest request queues (counters)
Simple flow control vs. per-flow queues vs. req-grant

Delay of innocent (non-congested) packets w. 1 congested dest

- Request-grant backpr. & per-flow queues best performance
 - small latencies for innocent cells – no backlogs & no HOL blocking in
- Simple flow control (indiscr. bkpr.) ➔ innocent flows suffer
 - ~ 2 orders of magnitude higher latency
Dynamically allocated (per-flow) queues

- Regional Explicit Congestion Notification (RECN – Duato e.a. HPCA 2005)
- Key insights:
 - Under normal conditions: one queue per link suffices
Dynamically allocated (per-flow) queues

• Regional Explicit Congestion Notification (RECN – Duato e.a. HPCA 2005)
• Key insights:
 – Under normal conditions: one queue per link suffices
 – When a link becomes congested (queue fills up): notify upstreams to allocate private (set-aside) queues for traffic headed to congested link
Dynamically allocated (per-flow) queues

1. Queue fills up → notify upstreams
2. Allocate set-aside Qs

- Regional Explicit Congestion Notification (RECN – Duato e.a. HPCA 2005)
- Key insights:
 - Under normal conditions: one queue per link suffices
 - When a link becomes congested (queue fills up): notify upstreams to allocate private (set-aside) queues for traffic headed to congested link
Dynamically allocated (per-flow) queues

1. Queue fills up \(
ightarrow\) notify upstreams

2. Allocate set-aside Qs

- Regional Explicit Congestion Notification (RECN – Duato e.a. HPCA 2005)
- Key insights:
 - Under normal conditions: one queue per link suffices
 - When a link becomes congested (queue fills up): notify upstreams to allocate private (set-aside) queues for traffic headed to congested link
- Complex link-level ctrl, costly for many concurrent hotspots
Industry-standard solutions

• Quantized Congestion Notification (QCN) for lossless (Converged Enhanced) Ethernet
 – Congestion points @ netw. links send congestion notifications to sources: → allocate separate queues & rate control flows injections
 • Multiplicative decrease, additive increase ~ TCP
 – Unfair and complex (Chrysos e.a. 2014)
→ Most Ethernet networks are lossy and rely on TCP

• Infiniband congestion control
 – very hard to tune and stabilize (Gusat et al. 2005)
 – deployment levels: unknown
Outline

• Warehouse-scale datacenters and supercomputers
• Traffic characteristics in commercial datacenters
• Efficient congestion control: an old, unresolved problem
• Multipathing: benefits & issues
• RDMA: optimizing data copying
• Global virtual address space & routing
Multipath routing allows to exploit all available capacity

- Single-path routing: performance varies with spatial orientation of traffic
 - Same happens with industry-standard flow-level multipathing (ECMP routing)
- Packet-level multipathing consistently delivers full throughput
 - Multipath Routing is also useful for Resilience

figures test different permutations on full-bisection-BW fat-tree
Multipath routing, however, complicates RDMA

Single-path RDMA
- When dest gets last RDMA packet, it can wake up the processor to pick up the data

Multi-path RDMA
- RDMA packets may arrive out-of-order
 - Need other mechanisms to detect xfer completion
Multipathing also complicates remote memory operations

Remote store & load cmds for one (remote) memory location

- Semantically: “Load” should read what “Store” wrote
 - OK with single-path routing
Multipathing also complicates remote memory operations.

Remote store & load cmds for one (remote) memory location

- Semantically: “Load” should read what “Store” wrote
 - OK with single-path routing
 - Not necessarily true with multipath routing
Outline

• Warehouse-scale datacenters and supercomputers
• Traffic characteristics in commercial datacenters
• Efficient congestion control: an old, unresolved problem
• Multipathing: benefits & issues
• **RDMA: optimizing data copying**
• Global virtual address space & routing
Inefficiencies of traditional “Send” – *how to overcome them*

Up to 5x (!) inefficiencies

1. Receiver copy NIC→User – *rcv addresses visible to sender: RDMA – PGAS*
2. Protection – *virtualized, user-level DMA initiation, IOMMU*
3. Buffer Pinning for DMA – *allow RDMA to fail, like page faults for ld/st*
4. Send before receive buffer allocated – *fix the API / Application*
5. Send buffer reuse immediately after send – *fix the API / Application*
Wish List for an ideal Copy (RDMA) Engine

- **User-Level RDMA Initiation:**
 - Arguments to be full, arbitrary 64-bit *Virtual* Addresses
 - Control Registers to be virtualized and protected *per-process*

- **No System Call necessary:**
 - Virtual to Physical Address Translation via *HW MMU’s* – not OS
 - Notification of Compl’n-Arrival: *per-process* Mailbox, not interrupt

- *(true)* Zero-Copy:
 - Any user page as source / destination
 - No need for pinning the src-dst pages in-memory: allow for translation failures during RDMA operation, resulting in notification of incomplete operation – like normal page-faults
 - Also useful for **Resilience**

- **Exascale Global Addr. Space:** full 64-b virtual addr. (+PID) throughout

- **Performance:** multi-channel engine; per-channel flow/rate control
Outline

• Warehouse-scale datacenters and supercomputers
• Traffic characteristics in commercial datacenters
• Efficient congestion control: an old, unresolved problem
• Multipathing: benefits & issues
• RDMA: optimizing data copying
• **Global virtual address space & routing**
User-Level Commun. in a true Global Virtual Address Space

• GVAS for exascale needs 64-bit addresses, with (global) protection domain identifier either incorporated in them or as extra bits

• Sophisticated network routing based on GVA will allow (large) page (segment) live migration —see “Progressive Address Translation“ in Katevenis 2007 paper http://www.ics.forth.gr/carv/ipc/ldstgen_katevenis07.pdf
SARC Project (2005-09):
Network Routing as Generalization of Address Decoding

- Physical Address Decoding in a uniprocessor
- Geographical Address Routing in a multiprocessor

Progressive Address Translation: Localize Migration Updates

- Packets carry global virtual addresses
- Tables provide physical route (address) for the next few steps
- When page 9 migrates within D, only tables in that domain need updating
- Variable-size-page translation tables look like internet routing tables (longest-prefix matches if we want small-page-within-big-region migration)
- Tables that partition the system, for protection against untrusted operating systems, look like internet firewalls
Conclusions

• Datacenter (and Supercomputer) Interconnects: increasingly important – challenges & opportunities

• Congestion Management: important, hard, unresolved
 – quick feedback, throttle sources, avoid drops, avoid deadlocks

• Multipathing:
 – good performance, useful for Resilience, but out-of-order delivery

• RDMA & Global Virt. Addr. Sp. for optimizing data copying:
 – known techniques, now need to convince industry to adopt them

• Routing: related to address translation and multipathing