
OpenCL kernels on FPGA architecture
www.exact-lab.it

Authors: Paolo Gorlani, Willi Menapace, Giuseppe Piero Brandino, Stefano Cozzini.

This poster reports on the eXact-lab srl activities within
the ExaNeSt project (www.exanest.eu) on the FPGA ex-
ploitation on selected scientific applications.

One of the tasks of
eXact-lab, within the
ExaNeSt project, is to
evaluate the computa-
tional performance of
the FPGA devices on the ExaNest board. Each board is
equipped with 4 FPGAs, 3 of which are available for com-
putation and 1 is reserved for network management. Using
Xilinx tools such as Vivado HLS, scientific OpenCL kernels
can be synthesized, allowing the FPGAs to be used as accel-
erators. The low power consumption of FPGAs compared to
GPUs and the possibility for deep level of optimization, are
expected to provide high level of computational efficiency.

In this poster we will present our preliminary results obtained
in porting openCL kernel on the FPGA architecture selected by
the Exanest project.

FPGA

Field Programmable Gate
Arrays are semiconduc-
tor devices that are based
around a matrix of con-
figurable logic blocks con-
nected via programmable
interconnects. This kind of

devices make possible to develop compute functionality di-
rectly at the silicon level.

Our goal has been to synthesize OpenCL kernel functional-
ity in a functional block into the FPGA logic, and to evaluate
the computing performance.

Xilinx Multiprocessor System-on-Chip

A Multiprocessor System-on-Chip is a
system-on-a-chip which uses multiple
heterogeneous processors.

We conduct our tests using a
Xilinx Zynq Ultrascale+ XCZU9EG
chip, which has been equipped with 2
GByte of DDR4 memory. This chip is divided in two parts.
The first is the processing system, among the others, it con-
tains the ARM cores, the DDR subsystem. The second is the
programmable logic, which contains the FPGA.

In order to exploit the full
capabilities of the system,
it is fundamental to un-
derstand the way the func-
tional unit developed into
the FPGA are connected
with the processing system
which includes the DDR
memory subsystem.

These communications are managed by the AXI4 protocol.

AXI4 protocol

AXI4 is an on-chip interconnect specification for the connec-
tion and management of functional blocks in a System-on-
Chip. We have employed two types of AXI4 buses/interfaces:

• AXI4 for high-performance memory transactions. It allows
burst of up to 256 data transfer cycles with just a single ad-
dress phase. We use it to connect the functional blocks to
the DDR memory.

• AXI4-Lite for simple, low-throughput, single memory
transaction. We use it to control and to set the status of
the functional blocks.

OpenCL kernel synthesis
In order to synthesize, implement and run on the FPGA an
OpenCL code, we need to perform three main steps by means
three software tools. We briefly describe the procedure in the
following subsections.

Step 1. High Level Synthesis
The first step is done using Vivado HLS. It performs the
High Level Synthesis of existing codes written in C, C++ and
OpenCL. It produces an RTL design which have the same
functionality of the considered coded function. RTL stands
for Register-Transfer Level, a design abstraction that models a
digital circuit.

Vivado HLS transforms an OpenCL kernel in a functional
block having two interfaces:

• an AXI4-Lite interface: it is used to control the functional
block and to pass all the kernel arguments;

• an AXI4 interface: it lets the functional block to access the
DDR memory.

Figure 1: Synthesized functional block.

Vivado HLS provides various pragma in order to optimize the
code synthesis. The output of this stage is a functional block
(Figure 1), which needs to be integrated within the processing
system.

Step 2. System design
The second tool is Vivado. It creates project designs (Figure
2), which integrates the RTL produced in the previous step
with the rest of the system.

Figure 2: Project design.

After various internal steps, Vivado produces a bitstream,
which can be loaded into the FPGA.

Step 3. Software development
The last tool is performed by means of Xilinx SDK. It is a soft-
ware development environment based on Eclipse which makes
possible to develop, debug and test the executable running on
the ARM, which controls the work of the functional block
build in the FPGA logic.

Results
We report our preliminary results on three simple, yet mean-
ingful test cases, in order to evaluate different features of our
hardware.

Simple array summation
First of all we have implemented a simple array addition. This
is usually a bandwidth bounded operation. In this way, we
want to study the best approach to exploit the available band-
width of our device.

We tested the bandwidth varying the number of functional
blocks used and the FPGA operative frequency. Furthermore,
we measure the bandwidth with and without burst memory
transactions allowed by the AXI4 protocol.

Figure 3: Measured bandwidth

Figure 3 shows the results. Burst memory transaction are
fundamental to achieve good performance. The peak band-
width in this case is around 7.8 GByte/s. Without burst the
peak performance drops to 2.1 GByte/s.

Matrix multiplication
The second test case refers to the implementation of the ma-
trix multiplication. We implemented a O(n3) block algorithm
(written in OpenCL) best suited for GPUs. We compared the
energy efficiency of the FPGA against two NVIDIA GPUs:
the GTX 1080 for single precision floating point numbers, and
the K20 for double precision floating point numbers. Results
are shown Table 1.

Single precision Double precision
GPU FPGA GPU FPGA

Performance [FLOPS] 5330 9.84 507 4.15
Power consumption [W] 165 7.23 110 7.58

Efficiency [FLOPS/W] 32.3 1.36 4.61 0.547

Table 1: Matrix multiplication results

Not surprisingly GPUs are two order of magnitude faster
than FPGA implementation such large performance gap re-
duces considerably (one order of magnitude) when we look at
the energy efficiency. It must be noted, however, that the im-
plemented algorithm has been designed keeping in mind the
architecture of GPUs and not the FPGA ones.

Force compute in Molecular Dynamic
We are porting an OpenCL kernel, which compute the forces
in a Molecular Dynamic code. This kernel performs a lot of
single memory access in order to get the data of close parti-
cles. This is the main bottleneck for FPGAs and GPUs. We
tested various force kernel implementations playing Vivado
HLS pragma. Table 2 reports our best results so far.

GPU FPGA
Execution Time [ms] 10 610

Table 2: Compute force execution times

The GPU is an NVIDIA K20. We can observe that perfor-
mance penalty is reduced by a factor of ten with respect to the
previous case. We are currently exploring the way to reduce
the huge bottleneck due to the single memory transfers.

Conclusions
We ported successfully three different kernels and compared
the performance against GPU devices. Even if, our results are
preliminary, we learned some some key facts on design code
for the FPGA.
• It is fundamental to use the pragmas available in Vivado

HLS in the OpenCL kernel. The main goal on the FPGA is
to design pipeline with a small initiation interval, in order
to provide an high throughput.

• The memory transactions need to be performed in a burst in
order to be fast.

• Accessing the memory in single transaction is a big perfor-
mance limiter.


