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Abstract. System software overheads in the I/O path, including VFS
and file system code, become more pronounced with emerging low-latency
storage devices. Currently, these overheads constitute the main bottle-
neck in the I/O path and they limit efficiency of modern storage systems.
In this paper we present Iris, a new I/O path for applications, that min-
imizes overheads from system software in the common I/O path. The
main idea is the separation of the control and data planes. The control
plane consists of an unmodified Linux kernel and is responsible for han-
dling data plane initialization and the normal processing path through
the kernel for non-file related operations. The data plane is a lightweight
mechanism to provide direct access to storage devices with minimum
overheads and without sacrificing strong protection semantics. Iris re-
quires neither hardware support from the storage devices nor changes
in user applications. We evaluate our early prototype and we find that
it achieves on a single core up to 1.7× and 2.2× better read and write
random IOPS, respectively, compared to the xfs and ext4 file systems.
It also scales with the number of cores; using 4 cores Iris achieves 1.84×
and 1.96× better read and write random IOPS, respectively.
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1 Introduction

Emerging flash-based storage devices provide access latency in the order of a
few µs. Existing devices [14] provide read and write latencies in the order of 68
and 15 µs respectively, and these numbers are projected to become significantly
lower in next-generation devices. Phase Change Memories (PCM) [21], STT-
RAM [11], and memristors [15] may provide even lower access latency, at the
scale of hundreds or tens of nanoseconds [8].

Given these trends, the software overhead of the host I/O path in modern
servers is becoming the main bottleneck for achieving µs-level response times
application I/O operations. Instead of storage device technology setting the limit
in increasing the number of I/O operations per second (IOPS), as was the case
until recently, we now have to deal with limitations on the rate of serving I/O
operations, per core, due to software overhead in the I/O path. Therefore, in this
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new landscape, it becomes imperative to re-design the I/O path in a manner that
it will be able to keep up with shrinking device and network latencies and to
allow applications to benefit from increasingly fast storage devices.

In this paper, we explore the design of a storage I/O stack that is placed
in user-space and in the largest part within the address space of the applica-
tion itself. An important design aspect is the separation of the control and data
planes [20] [5]. This idea comes from the area of networking and several frame-
works designed in order to take advantage of fast network devices [12]. The
control plane is responsible for taking decisions regarding resource allocation
and routing, while the data plane, also termed as the forwarding plane, forwards
network packets to the correct destination according to control plane logic. In
our storage I/O context, the control plane should decide if an I/O operation
should be accelerated by our framework or it should go through the standard
I/O path in the Linux kernel. More specifically, our control plane consists of an
unmodified Linux kernel which is responsible for normal processing for non-file
related operations and the configuration of several independent data planes. Our
data plane provides a lightweight mechanism to enable direct access the storage
devices without sacrificing strong protection semantics. We use traps in the data
plane for protection rather than using a separate trusted process [24] or server
for enforcing protection. Our approach has the advantage that it does not require
any context switches or network messages in the common I/O path. The premise
behind our design is to allow the application to operate as close as possible to
locally-attached storage devices.

The key features of our design are as follows:

1. We intercept file-related calls from applications at the runtime level and
convert them to key-value store requests.

2. We serve block operations from a key-value store. The key-value store in
our current prototype is build directly over memory-mapped devices and
makes extensive use of copy-on-write for failure atomicity, concurrency, and
relaxed-update semantics.

3. We rely on virtualization support in modern processors (Intel’s VT-x [23]
and AMD’s SVM [1]) to provide strong protection between different pro-
cesses that access the same storage devices. These technologies have already
been used to improve the performance of virtual machines. In this paper we
use them for providing protected, shared access to our key-value store from
multiple applications in each server.

4. Finally, we use a kernel-space module for initialization and coarse-grain file
operations that do not affect the common I/O path.

We present a proof-of-concept prototype, Iris, for Linux servers and provide
preliminary performance results. For our experiments we use PMBD [16] [8], a
custom block device that emulates PCM latencies. We show that, per-core, our
approach achieves a 1.7× improvement in read IOPS, and 2.2× in write IOPS.
We also show that our design scales well, providing up to 1.84× and 1.96×
improvement for random read and write IOPS respectively using 4 cores. We
compare Iris with the state-of-art Linux kernel file systems, xfs and ext4.
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Fig. 1. Top-level architecture of Iris.

The rest of this paper is organized as follows. In Section 2 we present the
design of Iris, and in Section 3 a preliminary evaluation. Section 4 reviews related
work. Section 5 concludes the paper and discusses the future work.

2 Iris Design

We implement a custom I/O path over fast persistent devices that removes most
of the overheads from the Linux kernel I/O path. Figure 1 shows the top-level
architecture of our system. Iris consists of three main parts:

– the key-value store, responsible for storing file blocks, providing atomic se-
mantics, and handling failure scenarios (e.g. system crashes),

– the Iris kernel, which handles accesses to the key-value store and performs
permission checks, and

– the I/O interposer which handles I/O processing at the user-space and gen-
erate key-value requests.

2.1 Key-Value Store

Our key-value store is designed primarily for fast storage devices, and is mainly
based on Tucana [18]. Its API provides methods for inserting a <key, value>
pair and for retrieving a <value> based on a <key>. It also supports range
queries which return keys in sorted order. We use range queries in order to
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enable better performance for sequential file accesses. At its core, it implements
a variant of Bε–tree [6], a write-optimized indexing data structure. It supports
multiple databases over a single or multiple devices. Since it operates at the
device level, it implements its own allocation mechanism for space management
over storage volumes. It maps the underlying devices in memory, and access
them as memory regions.

Its persistence mechanism is based solely on the Copy-On-Write (COW)
mechanism [22]. Common key-value stores use journaling for consistency pur-
poses. In this case, for each update the mutation is first appended in a log and
then updated in-place in the primary storage space. Our store operates differ-
ently: It creates a copy of the new value and subsequently modifies it. More
specifically, each modification to the tree data structure requires the update of
a set of nodes. Instead of updating them in-place, we create a copy of the old
nodes and updates only the copy. This procedure begins from a leaf node, where
a new <key, value> inserted, and goes recursively up to the root of the tree. At
any point in time, there are two root nodes: The first one is read-only, while the
second one is where all data updates occur.

Our system is capable of batching a series of updates which subsequently are
written to the device in an atomic manner, thus reducing actual I/O operations.
After a period of time has elapsed or the application explicitly instructs to make
its changes persistent, the key-value store with an atomic operation will update
the read-only root to be the new persistent view of the database. Finally, keeping
versions of the database is supported by keeping pointers to previous versions of
the tree-structured index.

We keep both file blocks and file metadata in the key-value store. To dis-
tinguish different files, we use the persistent and unique inode number provided
by VFS for each file. The key for accessing a file block in the key-value store is
formed by the concatenation of the file’s inode number and the requested block
number. In our implementation, we use a block size of 4KB, but this is a pa-
rameter configurable by the system administrator. The value returned by the
key-value store is a block of the actual data of the file. We also keep persistent
metadata for each file that is present in the key-value store. These include the
inode number, the file path and the name of the file, a struct stat that also
contains the size of the file, and the file ownership and permissions information.

We rely on the key-value store to provide data and metadata consistency
upon failures. By guaranteeing a series of update operations to be atomic, we
ensure that file data and metadata will not be in an inconsistent state after a
failure. Current state-of-art file systems use a journaling mechanism to provide
data integrity after a failure. Each write has to be done first on the journal
device and then on the primary device. When a failure occurs, the file system
has to replay the log. We use a different approach for failure handling. By using
the copy-on-write technique, we remove the overhead to perform a write on both
the journal device and then to the primary device. After a failure, only the last
consistent view of our key-value store is visible to applications.
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Our key-value store is designed to be mapped to multiple applications, allow-
ing shared storage. Therefore, it has to support concurrent get and put requests.
To maintain POSIX semantics, for each file the results of the last write must be
returned to any subsequent read operation. Although these can be easily imple-
mented using coarse-grain locking, we have implemented a more sophisticated
locking protocol to support concurrent reads and writes for different files.

2.2 Iris Kernel

The Iris kernel is the heart of the system. It maps a fast storage device to the
application process address space. Therefore, in the common path Iris avoids
the overheads of system call processing, VFS, and in-kernel file system process-
ing. The main drawback of moving all I/O processing into user space is the
lack of protection that Linux kernel provides. To address this concern, we rely
on processor virtualization virtualization features. Intel VT-x [23] virtualization
technology provides two different privilege domains: VMX-root and VMX non-
root. Each of them supports the standard privilege rings (0 to 3). The purpose
of this separation is to better support Virtual Machine Managers (VMMs). Nor-
mally, the VMM runs on VMX-root, ring 0, while the guest OS of each virtual
machines runs on VMX non-root, ring 0, and guest processes on VMX non-root,
ring 3. In our work, we use this privilege separation for a different purpose,
following the idea behind the Dune [4] prototype. The Linux kernel runs on
VMX-root, ring 0, the protected I/O path code runs on VMX non-root ring 0,
and user processes (issuing I/O requests) run on VMX non-root ring 3. By using
this privilege separation we provide strong protection semantics to access shared
storage devices, similar to the unmodified Linux kernel.

The Iris kernel runs on VMX non-root ring 0, thus it is protected from user
processes that run on VMX non-root ring 3. When I/O interposer issues a get or
put request, it checks if the specified process has sufficient privileges to access the
file with the specific inode number. If not, an error is returned to the interposer
and then to the user.

2.3 I/O Interposer

The purpose of this part is to intercept I/O system calls to libc. We provide
our own dynamically linked library that replaces these libc calls and ensure that
our library gets priority over libc (via LD PRELOAD). Therefore, applications
run unmodified, while our I/O interposer handles all open file descriptors and
translates I/O requests to key-value requests: get and put. For each open file, we
maintain state related to the file, which allows us to handle ftruncate, fallocate,
stat, lseek and their variants.

Except from the persistent file metadata that are stored inside the key-value
store, the interposer also uses in-memory metadata. These metadata include
open file descriptors and the current read/write offset in each file. These meta-
data are also not persistent in the case of the unmodified Linux kernel. After a
failure, applications do not expect to have the files descriptors that are available
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EXT4 XFS Iris

read 269 261 445

write 203 199 439

Table 1. Single thread random IOPS (thousands).
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Fig. 2. Random read/write IOPS scaling.

before a failure. We also keep an in-memory copy of persistent metadata, to
accelerate metadata operations but without sacrificing correctness.

3 Evaluation

In this section we provide a preliminary evaluation of Iris. Our testbed con-
sists of two Intel Xeon E5620 processors running at 2.40GHz and 24 GBytes of
DDR3/1333 DRAM organized in 2 NUMA nodes, each of them with 12 GBytes
of DDR3 DRAM. In our experiments we pin the benchmark threads on a sin-
gle NUMA node in order to remove NUMA-related effects. We run experiments
with FIO [2] to measure random-access read and write IOPS, with a block size
of 512 bytes, a device queue depth equal to 1, and direct I/O to bypass the page
cache. We vary the number of I/O issuing threads from 1 to 4. Each thread per-
forms I/O on a separate file of size equals to 128MB. We use the PMBD [16] [8]
block device driver to emulate the access latencies of a PCM memory device over
DRAM. We dedicate 8GBytes of the testbed’s DRAM for use as PMBD’s stor-
age space. We compare Iris with the current state-of-art file systems provided
by the Linux kernel, EXT4 and XFS. For both of these filesystems, we also use
PMBD as the underlying block device.

Table 1 shows the number of random IOPS for both reads and writes using a
single thread. The results obtained from Iris have very small variance between
the runs. Regarding random read IOPS, Iris provides 1.65× and 1.7× higher
number of IOPS compared with EXT4 and XFS, respectively. For random write
IOPS the improvement is 2.16× and 2.2×, respectively.
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Figure 2 shows how random IOPS scale while increasing the number of
threads from 1 to 4, compared to EXT4 and XFS. Using 4 threads, Iris pro-
vides 1.84× and 1.82× for reads and 1.96× and 1.8× for writes higher number
of IOPS respectively. These results show that while we increase the number of
threads the performance improvements remains almost the same. With Iris, we
serve around 400 KIOPS per thread (i.e. processor core in this evaluation exper-
iment), almost 2× more than what is achievable with EXT4 and XFS, without
sacrificing protection guarantees and failure resilience.

In this work, we have focused the evaluation on small random read/write
accesses, to better highlight overheads and the improvements achievable with
Iris. Optimizations focusing on throughput, especially for sequential accesses,
are outside the scope of this paper, but we expect significant improvements
for such access patterns as well. These improvements are a consequence of the
design decision to build out key-value store on top of a Bε–tree, rather than
more commonly used hash-based data structures. To serve sequential accesses,
Iris issues range queries to its underlying key-value store, which then returns the
requested blocks in sorted order. This helps Iris to accelerate sequential accesses.
We leave this optimization and its evaluation as a future work.

4 Related Work

Recent papers have addressed the issue of how to optimize accesses to fast I/O
devices. The Arrakis [20] [19] and IX [5] operating systems are based on the
concept of separating the control and data planes. The control plane is respon-
sible of managing the hardware resources in a protected and isolated manner,
while the data plane is a low-overhead mechanism that allows direct but safe
access to the hardware resources, specifically I/O devices.

Arrakis, which is based on Barrefish [3], achieve this by relying on SR-
IOV [17] hardware features. SR-IOV allows a single physical PCI-Express device
to export several virtual devices that are isolated from one another. Although
they present the idea of it on both network and storage devices, their evaluation is
mainly for network devices. Currently, SR-IOV support is not available for stor-
age controllers, although it is commonly available in server network adapters.
The current SR-IOV support for storage controllers/devices has many limita-
tions and is not practical to use yet. In Arrakis they also do not handle the
case of data sharing, which is a fundamental design issue in storage hierarchies.
In [19] the authors present the key concepts of Arrakis but with emphasis on
the storage path. They claim that the current storage path suffers from many
sources of overheads because of the very broad-scope requirement to provide a
common set of I/O operations for a wide variety of different user applications.
They propose a custom specialized storage path for different kinds of applica-
tions, with direct access to storage devices. Similarly to Arrakis, they require
hardware virtualization support from storage devices (SR-IOV), which however
is not practical today.
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Compared to Arrakis, we only require hardware virtualization support from
the processor (e.g. Intel’s VT-x in our prototype), but not from the I/O devices.
We also use an unmodified Linux kernel, thus we still support user applications
that do not require I/O acceleration. The operations that our custom data plane
cannot handle (e.g. network accesses) still go through the normal path inside the
kernel.

IX uses the unmodified Linux kernel as the control plane and implement
a lightweight OS abstraction for the data plane. It uses Dune [4] to provide
privilege separation between the control plane, the data plane and the normal
processes, to provide safe access to the hardware devices. They do not require SR-
IOV virtualization support, but they propose a solution and evaluation only for
network devices. Authors provide an event-driven API (libIX) that provides run
to completion with adaptive batching, zero-copy API and synchronization free
processing. These optimizations targeting throughput and the new event-driven
API require changes to the applications. We also use Dune for protected accesses
to hardware devices but our main contribution is to minimize latency, and we
don’t require changes to the user applications. Thus IX (i.e. network-specific)
optimizations are not suitable for Iris, a latency-optimized storage path.

Moneta-D [7] uses specialized hardware for fast access to I/O storage devices
with strong protection semantics. All the metadata operations still go through
the normal I/O path in the Linux kernel. They optimize read/write operations in
a way that does not require crossing the kernel for permission checks. Moneta-D
provides a private, virtualized interface for each process and moves file system
protection checks into hardware. As a result applications can access file data
without operating system intervention, eliminating OS and file system costs
entirely for most accesses. In our work, we only require virtualization support in
the processor, rather than in the interface to storage devices.

Another approach to access fast storage devices appeared in Aerie [24]. This
work assumes byte-addressable NVM placed on the memory bus. The key idea
in this work is that the NVM is directly mapped in the user’s address space.
Using this approach, user application can read/write data and read metadata
directly; however, the metadata updates have to be performed by a separate
trusted process, the Trusted FS Process. This approach has the disadvantage that
metadata updates, which are done by a centralized process, can limit scalability.
We don’t have this limitation in our approach, as multiple applications can
update their metadata concurrently.

In Mnemosyne [25] and NV-Heaps [9] the authors propose ideas on how to
use NVM for a persistent replacement to volatile memory that user applications
can use, i.e. applications can rely on in-memory data-structures that can survive
system crashes. Mnemosyne and NV-Heaps provide an API for NVM allocation
and deallocation, with failure handling provisions. They also implement persis-
tent data structures and atomic semantics (transactions) to leverage NVM from
user applications. These works are orthogonal to our approach. In principle, we
can apply these techniques to optimize access to NVM from our key-value store.
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Other works like BPFS [10], PMFS [13], NOVA [27] and SCMFS [26] try
to optimize in-kernel file systems. They use the standard VFS layer, and try to
optimize the file system data structures to access NVM. We don’t compare with
these approaches as we propose an alternative way to access NVM, different
from the common system call and VFS layer approach.

5 Conclusions & Future Work

In this paper we propose Iris, a custom storage system for providing direct access
to fast storage devices and minimize system software overheads without sacri-
ficing strong protection semantics. We implement a key-value store for storing
file data and metadata, and guarantee both atomicity and recoverability. The
key-value store is designed to scale-out by utilizing fast storage devices at several
nodes. We use processor virtualization features to provide protected accesses to
our key-value store. In the preliminary evaluation, we show improvements up to
1.7× for random read IOPS and 2.2× for random write IOPS as compared with
state-of-art Linux kernel file systems using a single core. Performance scales with
the number of cores, with up to 1.84× and 1.96× improvement for random read
and write IOPS, respectively, using 4 cores

Our future work includes the full implementation of Iris and its extensive
evaluation using real applications, including On-Line Transaction Processing
(OLAP) and On-Line Analytical Processing (OLTP) workloads.
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