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The Essence of Communication
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— unless able to prefetch
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Remote DMA versus Cache Coherence
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Can we approach this ideal, in Cluster Communication?

* Cluster Computing / Datacenters / HPC:
= many thousands of nodes
“node” = island of (hardware) cache coherence

e Can we get Cluster Communication to be analogously
fast like store & load instructions in a coherence island?
+ small delay due to distance, but not much more

* Clusters originate from mass, commodity market, where
customers did not care about “a few extra ps”...

* Work done in Energy-Efficient Datacenter/HPC projects
= 64-bit ARM processors
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Inefficiencies in Cluster Communication, to be overcomed

Sender Memory Receiver Memory
user . user
ideal (zero—copy) RDMA 1
A
Sender NIC | Notwork | ReceiverNIG | |
Cp
MA ».. _ DMA ¢
kernel or lib kernel or lib

* Five (5) copyings of the data, instead of just one (1) !
—Data copying consumes time and energy

e Start by eliminating (large) NIC buffers:
—DMA across the network — RDMA
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DMA Initiation: System Call, or directly from User-Level ?

Sender user process Receiver Memory
user Mem virtual addresses user
N\ ideal (zeror-copy) RDMA
A
kern)e)/ \ NI Network N
phy. Cp| B
1~ addr. |VDMA =
i d dma write ™ e
ma r [
kernel or lib i ack ack‘/ kernel or lib

 System Call to initiate a DMA (with physical addr.) = 3 to 4 us
— on 64-bit ARM in Xilinx Zyng UltraScale+ under Linux

* For the virtualized DMA engine (8 channels), that accepts virtual
address arguments, Initiation (writing 3-4 registers) = <0.5 us

 Next Questions: Who translates addresses & where?
Why copy User to/from Kernel/Library?
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Scalability: Global Virtual Addresses & Progressive Translation

Source
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 for Scalability: not all nodes can be required to know all other nodes’
translation tables —see “Progressive Address Translation” in the M.
Katevenis paper in: Stamatis Vassiliadis Symposium 2007
= Destination Addresses in network packets must be Virtual

 for Scalability: 64-bit GVA + (global) protection domain identifier

M. Katevenis: Cluster Communication Latency - Stamatis Vassiliadis Symposium, SAMOS 2017




Two Slides from my Stamatis Vassiliadis 2007 Symposium talk:
Network Routing as Generalization of Address Decoding
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* Physical Address Decoding * Geographical Address Routing
in @ uniprocessor in @ multiprocessor

http://www.ics.forth.gr/carv/ipc/ldstgen katevenisO7.pdf
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Progressive Address Translation: Localize Migration Updates
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Packets carry global virtual addresses

Tables provide physical route (address) for the next few steps

When page 9 migrates within D, only tables in that domain need updating

Variable-size-page translation tables look like internet routing tables
(longest-prefix matches if we want small-page-within-big-region migration)

Tables that partition the system, for protection against untrusted operating
systems, look like internet firewalls
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Scalability: Global Virtual Addresses & Progressive Translation
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translation tables —see “Progressive Address Translation” in the M.
Katevenis paper in: Stamatis Vassiliadis Symposium 2007
= Destination Addresses in network packets must be Virtual

 for Scalability: 64-bit GVA + (global) protection domain identifier
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Current Address Translation Arch. not ready for GVAS

. PR
vDMA engine o nl.
|
read or write addresses, =3 %
virtual or physical, 3O
but truncated to: | 44 bits o o
e
Processor SMMU translate & s
cores if virtual =
physical-only| 49 pits E ©
addresses > D
Caches “._route basedon 9! &
- phy. address &
local 448 GBy window <
DRAM 85_
to other PS peripheral devices e

e Address translation architecture of A53 in Xilinx Zynqg UltraScale+

* DMA engine is virtualized, but truncates virtual addresses to <64 b
* no mechanism to send the untranslated VA to the network

* (remote) load/store instructions suffer compulsory addr. translation
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Why copy data between User and Kernel/Library buffers?

Sender user process Receiver Memory
user Mem __|virtual addresses user
N\ ideal (zeror-copy) RDMA
A
kern)e)/ \ NI Network N
phy. cof B
| addr. |vDMA =
1 db dma write > o
mar [
kernel or lib i ack ack‘/ kernel or lib

* “Pinned” buffers: traditional DMA does not tolerate page faults

» “Registered” buffer addresses, in the lack of “System” (1/0) MMU
 Non-cacheable buffers, in the lack of cache-coherent DMA

* Send buffer reuse immediately after send initiation

* Transfer occurs before receive-buffer ready, and receive Application
unwilling to accept reception at library-specified address
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MPI: Send-Rcv Match at Receiver, User-Specified Rcv Addr

Producer | | i
. (early) receive

(user process):

ready to send,
write into sb ready

at which address? receive,

b/nﬁmy
| uffer,
pointerto rb please!
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sb
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v

-
Consumer

(user process):

_____ read from rb

; -y doneY "V

1 done

e cost = one extra network round-trip time for sender to learn the address
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Snd-Rcv Match at Sender, User-Specified Receive Address

Producer " pointertorb (early) receive !
(user process): | / rree%g?/vgo I
write Into Sb matc : : but I'n m}’/ :
| ! buffer,
o . | please!
send \\\\\\\\\\\J :
sb :
rb
i .
| ' done Consumer
R I (user process):
I t(dy read from rb
I . (done
; v N

* minimal latency achieved; early receive (rb pre-alloc by user) still needed
* does not work with MPI_ANY_SOURCE
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Receiver willing to accept Data at any Address (and not copy)

Producer I "aIIocéte buffer, and...
(user process): here come the data"
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> I
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: match v
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» Eager delivery at preallocated, library-managed buffer, then given to user
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Mbox — Remote Enqueue: Asynchronous Event Multiplexing

single—word messages

P1

' sent via single store
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longer messages: first composed locally...

e Atomic enqueue into shared space, unlike dedicated space with RDMA

e Space reserved only for number of actual senders — not potential senders

e Event Multiplexor — requests, notifications (like Select system call)

e RDMA completion should enqueue notification to receiver and sender
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Per-Task Mbox Q’s & Scheduler as Interrupt Generalization

Event Queues Processes
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Tasks block and wait when synchronously reading from an empty queue
Scheduler selects a non-empty queue of highest priority and runs its task
Time quantum switches Q’s and Tasks inside top non-empty priority class
Enqueues into higher priority Q’s interrupt lower-priority running tasks

RDMA is the Datapath — Queues are the Control
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Conclusions

* Interprocessor Commun. analogous to load/store instr.
* No system calls — virtualized DMA engines

* Need a new Address Translation Architecture
=Global Virtual Address Space (GVAS)

* Notifications, Mboxes, Scheduler: generalized interrupts

* Adapt libraries & API’s to user-level, zero-copy commun.
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Backup Slides
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RDMA/wr-allocate? — Software-Guided Prefetch & Coherence

Cache coherence through Software: simpler HW, energy efficient
Vassilis Papaefstathiou: ICS’13, and PhD Dissertation

* SW fetches data from the cache
core . core
of the last producer
— before task execution | |
— prefetch while executing other task Cache totch dCtaChc? t
— wait for completion command Vﬂ; e
o
* FETCH (read-only) -
e L _san o |
NoC —< }
 FETCH-O (with ownership) update? g ‘ I <
— for read-write task args y v ~ s R
Memory

— migrate cache-line ownership

— ensure that each cache-line is
dirty in at most one cache (else,
write-back order is undefined)
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Epoch Numbers: allow SW to control Cache Replacements

Cache Way 0 Cache Way 1 Cache Way 2 Cache Way 3

Tags Data Tags Data Tags Data Tags Data &
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Cache Controller ggggﬁt i l \ l i incoming RDMA
configurable - & DECIDE:
i epoch(s :
2P e toppreée)rve whom to evict, if at all keeping this in the cache

* Use a few (e.g. 3) tag bits per cache line to record which “group” of
cache lines each belongs to; configure replacement policy by groups
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Epoch Numbers Identifying Task Lifetimes

Curr. Epoch| 3

Epoch
Tags Data

Core

Next Epoch | 4
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Tags Data

active epochs

: next!
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Scratchpad-like properties with the convenience of caches
DMA prefetched lines < “next” epoch

runtime advances “current” epoch after tasks finish

evict “past” lines first,...
.. then evict from epoch(s) with # of lines per set > their quota
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Evaluation Summary: Coher. (HW/SW), Prefetch (gradual/bulk), Epochs

fperf. impr.: +3% to +44% (.,.20%)\ Gerf. impr.: +3% to +33% (+14%\)
L2 misses: -17% to  -67% (-32%) L2 misses: -22% to  -71% (-38%)
NoC traffic: 2% to -56% (-25%) NoC traffic: ~ -24% to -72% (-41%)
kEnergy: -8% to -53% (_28%) inergy: -18% to -65% ('44%)
\
HW Coherent  \ o Hw Coherence
+Epochs +Epochs
»
\ ¢
\ /
Conventional HW Prefetcher 1 N Ky T
_____ \< R 7.{ . .
A N/
Perf: -14% to +20% °/
Explicit Bulk Pref. —= RDMA, SW initiated
Perf: +6% to +66%
Baseline: HW-coherent caches, no prefetching
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