<u>Multi-tier Interconnect and Mechanisms</u> <u>for Exascale Communication</u>

> Dr. Javier Navaridas The University of Manchester

Implications of Communications on Performance

- Not having Data readily available severely limits performance
 - CPUs stall for Memory access
 - MPI tasks stall for IPC traffic
- This can have a huge impact (as seen in Top500 list)
 - Linpack (CPU intensive) vs HPCG (some Comm): 2 orders of magnitude lower processing throughput

Comuniter	COURSE !!	Phopial	finas.	MFCU -	Allen -
K Computer SPARC64 Villfx 2.0GHz, Tofu Interconnect	Japan	0.6027	10.5	5.3%	5.7%
Tianhe-2 NUDT TH-IVB-FEP, Xean 12C 2 2GHz, IntelXean Phi	China	0.5801	33.9	1,1%	1.7%
Trinity Cray XC40, Intel Xeon Phi 7250 58C 1.4GHz, Aries	USA	0.5461	14.1	1.2%	3.9%
Piz Daint Cray XC50, Xeon E512C 2.6GHz, Aries, NVIDIA Tesis P100	Switzerland	0.4864	19.6	1.9%	2.5%
Sunway TaihuLight NRCPC Sunway SW26010, 2000 1.45 GHz	China	0.4808	93.0	0.4%	0.5%

- Many different forms of traffic
 - Inter-processor
 - Collectives
 - Storage
 - System-level & Control
- Traditionally traffic types are segregated over separate networks

Huge Impact of Data Transfers on Power/Energy

- Networks in large installations can consume a large proportion of the power budget
 - 10-50% according to [1]
 - 10-20% according to [2]
- The energy needed for moving data around is much higher than for performing computation
- Can Exascale's strict power budget really sustain several parallel networks?
 - We believe such design is inefficient

[1] Abts, D., et al: Energy proportional datacenter networks. In: Intl. Symposium on Computer Architecture. pp. 338{347. ISCA '10, ACM, New York, NY, USA

 [2] Heller, B., et al.: Elastictree: Saving energy in data center networks. IN: NSDI'10 Proceedings of the 7th USENIX conference on Networked systems design and implementation
3

Existing Interconnection Technologies

- **AXI**: Mandatory at the processor level (ARM subsystems other architectures have their own)
 - Designed for high locality, not for scalability
 - Short messages, low latency, low number of concurrent transactions
 - Can we leverage for Exascale?
- Ethernet: De facto standard in most systems
 - Low performance: some HPC implementations exist, not enough for our purposes
 - Limited scalability, IP layer helps with scalability but severely degrades performance
- Infiniband: High Performance Interconnect BUT
 - Expensive and power-hungry (due to its excessive complexity)
 - No FPGA IP readily available
 - Can it really scale to Exascale? (millions of endpoints?)

ExaNeSt Interconnection Solution

- Unified interconnect to reduce energy
 - Many new issues appear due to interferences between traffic types
 - Mechanisms for QoS
 - Congestion control
 - Locality Strategies

ExaNeSt Interconnection Solution (QoS)

- Quality of Service at the DMA level
 - Advanced scheduling that assigns higher priority to small transfers
 - Two transfer queues: high / low priority queue based on a threshold
- Preliminary results show
 - Great improvement for critical small transfer transmissions
 - A small increase in the overall latency

Transfer policy	Latency of the small transfer	Total latency
FIFO scheduler	40µs	42µs
Priority Scheduler	10µs	45µs

ExaNeSt Interconnection Solution (Congestion Control)

- A novel congestion control, DMMF
 - Contention points located at links
 - Reaction points placed at the sources (e.g. RDMA engines)
 - Multi-channel RDMA engine with perchannel rate throttling

ExaNeSt Interconnection Solution (Exploiting Locality)

- We investigated several aspects of dataaware allocation [3]
 - Effects of spatial and temporal locality
 - Affinity of data to storage sources
 - Per-flow bandwidth allocation
- Many opportunities for the Scheduling system to exploit locality to improve performance
 - Temporal locality can reduce application runtime up to a 10%
 - Spatial locality can be more significant (one order of magnitude faster with perfect locality)
 - Traffic prioritization provides up to 17% reduction in runtime
 - Data-locality information can be essential for extreme-scale systems
- Distributed storage can outperform traditional SAN architectures

[3] JA Pascual, et al. "On the Effects of Allocation Strategies for Exascale Computing Systems with Distributed Storage and Unified Interconnects". Invited Paper. CC-PE

ExaNeSt Interconnection Solution

- Unified interconnect to reduce energy
 - Many new issues appear due to traffic interferences
 - Mechanisms for QoS
 - Congestion control
 - Locality Strategies

ExaNeSt Interconnection Solution

- Unified interconnect to reduce energy
 - Many new issues appear due to traffic interferences
 - Mechanisms for QoS
 - Congestion control
 - Locality Strategies
- Multitier hierarchical network essential to support massive Endpoint counts
 - Makes fault monitoring and tolerance more manageable

Scalable Fault-tolerance (LO|FA|MO)

- Fault-tolerance is another of the challenges of Exascale
 - Millions of Endpoints
 - Very low MTBF (hours?)
 - Lots of control traffic
- LO|FA|MO: a distributed, hierarchical mechanisms to enable systematic awareness for extremescale systems [4]
- Relies on hierarchical information
 - LO|FA|MO component runs in every node to detect faults and other critical events
 - Information is propagated upward the system hierarchy
 - Reactions can be autonomously initiated at every level based on that information

[4] R Ammendola, et al. "A hierarchical watchdog mechanism for systemic fault awareness on distributed systems." Future Generation Computer Systems, 53:90–99, 2015.

ExaNeSt Interconnection Solution

- Unified interconnect to reduce energy
 - Many new issues appear due to traffic interferences
 - Mechanisms for QoS
 - Congestion control
 - Locality Strategies
- Multitier hierarchical network essential to support massive Endpoint counts
 - Makes fault monitoring and tolerance more manageable
 - Simplifies routing
 - Tier 0: AXI
 - Tier 1-2: ExaNet
 - Tier 3+: ToR

Tier 0: QFDB-level AXI-Crossbar

Tier 0: QFDB-level AXI-Crossbar

- Extend AXI protocol for intra-QFDB Routing
 - No need for protocol translation
- Implemented a Multipath routing scheme
 - Reduces in-node congestion when high congestion in a link occurs
 - Configurable multipath threshold values
 - 4 flits threshold seems the sweet spot
- Plans for leveraging it for fault-tolerance

Tier 1-2: Blade/Chassis level

Tier 1-2: Blade/Chassis level

- Fully parametric (width, VCs, credit) [5]
 - Torus-like topologies (Dragonfly?)
 - Virtual cut-through
 - 2 VCs to avoid deadlocks
- Data Link Controller (APElink)
 - low latency, AXI compliant, valid/ready interface with Aurora IP
 - low latency credit management: 8 bit per VC, programmable threshold values
- byte enable management developed
 - Routing&Arbiter infrastructure allows to implement an enhanced DOR, VC select based priority
- Interfaces with the lower level by means of NI + RDMA engine

48

Size (Byte)

96

192

[5] R. Ammendola, et al. "Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project" J. Phys.: Conf. Ser. 898 082045, 2017

2500

2000 1500

1000

500

24

Network Interface + RDMA Engine

- Virtualized ExaNet MBOX and Packetizer
- SMMU middleware configuration
- ExaNet $\leftarrow \rightarrow$ AXI adapters
- Virtualized 10G Ethernet NIC
- Advanced DMA Engine
 - Full 64 bit addresses + 16 bit PDID
 - 1024 source channels
 - CmpltNotification @ destw. 256 (~fully associative) contexts
 - resiliency: ACKs/ re-xmitper 16 KB block, time-outs
 - Multipath at block level
 - Packets payload aligned to dest. address: arbitrary addresses
 - Software can configure paths &

define transfer dependencies

← Is this the same mechanisms as before DMMF?

Tier 3-: Chassis/Cabinet level

Top-of-Rack Switch Architecture

- 3-stage VCT/Wormhole architecture [6]
 - Routing | Allocation | Traversal
- Arithmetic and multipath routing
 - No need for power-hungry CAMs
 - Great flexibility for topologies
- Virtual Output Queues (VOQ)
 - Reduces contention for resources
- Currently interfaced through a simple packetizer [7]
 - Seamless sharing of memory and FPGA resources (Evaluated with some test applications)
- Looking into interfacing with lower layers

STREAM benchmark			
		Best Rate	
Implementation	Function	MB/s	
PS DRAM	Copy:	3344.6	
	Scale:	1825.9	
	Add:	2033.2	
	Triad:	1683.2	
Local BRAM	Copy:	45.4	
	Scale:	44.0	
	Add:	44.2	
	Triad:	44.6	
Remote BRAM	Copy:	4.8	
	Scale:	4.7	
	Add:	4.7	
	Triad:	4.7	

Climate modelling kernel

Platform	Exec. Time (s)
CPU Local	7.52
CPU Remote	68.232
FPGA Local	2.533
FPGA Remote	24.186

[6] C Concatto, et al. "A CAM-free Exascalable HPC Router for Low-energy communications". ARCS'18

[7] J Lant, et al. "Shared Memory Communication in Networks of MPSoCs". Under review

Optical Switch Demonstrator

- Developed and fabricated a small 2x2 full optical switch prototype
- Can be composed into matrices of switches for larger NxN crossbars

Considerations on Topologies

Considerations on Topologies

- Studied state-of-the-art HPC topologies
 - Fattree, dragonfly, tori
 - Graph-based topologies (Jellyfish, de Bruijn, Kautz)
- But also proposed a multi-objective optimization framework [8]
 - Objectives: Performance, Resilience, Cost
 - Metrics: Bisection width, Path diversity, Number of links
 - Algorithms: NSGA-II, SMS-EMOA
- Most of the above are Deadlock-prone
 - Dragonfly and Torus had their own deadlock-avoidance mechanisms; others do not
 - We propose a collection of novel deadlock mechanisms for arbitrary topologies and routing [9]

[8] JA Pascual, et al. "Designing an exascale interconnect using multi-objective optimization". CEC 2017: 2209-2216

[9] JA Pascual, et al. "High-Performance, Low-Complexity Deadlock Avoidance for Arbitrary Topologies/Routings". To be Submitted. ICS'18

Summary of ExaNeSt Interconnection

- Fully-functional interconnect supporting inter-node transfers
 - NI + ExaNet switches + high-speed links
 - user-level, zero-copy transfers through virtualized RDMA engines
 - microsecond application-side latency
- A prototype FPGA-based architecture for **ToR switches**
 - Supports resource sharing across devices through a (very) basic packetizer
- A new **AXI crossbar** architecture for intra-DB communications
- A small-scale physical demonstrator of an **optical Switch**
- Many mechanisms to handle the challenges of Exascale systems
 - QoS, congestion control, locality strategies, fault tolerance and monitoring
- Research around topologies
 - Studied most state-of-the art topologies
 - Proposed a multi-objective topology optimization framework
 - Proposed new deadlock avoidance mechanisms

Related papers / presentations

- [3] JA Pascual, et al. "On the Effects of Allocation Strategies for Exascale Computing Systems with Distributed Storage and Unified Interconnects". Invited Paper. CC-PE
- [4] M. Katevenis, et al. "The ExaNeSt Project: Interconnects, Storage, and Packaging for Exascale Systems", DSD'16
- [5] M. Katevenis and N. Chrysos, "Challenges and Opportunities in Exascale-Computing Interconnects", Keynote, AISTEC'16.
- [6] P Xirouchakis ea, "Low latency RDMA Engine for High-Performance Computing", under preparation.
- [7] D. Giannopoulos ea, "Fair Allocation for RDMA Transfers", under preperation
- [4] R Ammendola, et al. "A hierarchical watchdog mechanism for systemic fault awareness on distributed systems." Future Generation Computer Systems, 53:90–99, 2015
- [5] R. Ammendola, et al. "Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project" J. Phys.: Conf. Ser. 898 082045, 2017

[6] C Concatto, et al. "A CAM-free Exascalable HPC Router for Low-energy

1711 Lant. et al. "Shared Memory Communication in Networks of MPSoCs". Under ²⁴