Exploiting the ExaNeSt Communication Primitives for a High Performance MPI Library

A. Psistakis, M. Asiminakis, P. Xirouchakis, M. Gianioudis, P. Peristerakis, F. Chaix, M. Ploumidis, V. Papaefstathiou, N. Chrysos, M. Katevenis

Foundation for Research and Technology - Hellas (FORTH)
Goals

• Functionality contributed by FORTH within ExaNeSt
 • Communication primitives
 • Hw + sw
• Functionality employed by ExaNeSt, contributed by ExaNoDe
• Demonstrate above functionality
 • MPI library
 • Partial implementation of the MPI standard
 • Contributed by FORTH
Overview

• Prototype employed
• Transfers between local and remote virtual addresses
• User-level zero-copy RDMA
 • Virtual addresses
• User-level low-latency atomic message delivery
• UnimemMPI
Overview

• Prototype employed
 • Transfers between local and remote virtual addresses
 • User-level zero-copy RDMA
 • Virtual addresses
 • User-level low-latency atomic message delivery
 • UnimemMPI
Development Prototype
Overview

• Prototype employed

• Transfers between local and remote virtual addresses

• User-level zero-copy RDMA
 • Virtual addresses

• User-level low-latency atomic message delivery

• UnimemMPI
Transfers between local and remote VAs
Using remote virtual addresses

- Access to remote virtual addresses
 - Unimem architecture
- Virtual address in Xilinx Linux Kernel = 39 bits
- Routing data add to remote VAs = 8 bits
- Restriction (due to Xilinx Kernel, not Unimem)
 - \forall Process Virtual address $\in [0, 2^{31} - 1]$
- Workaround
 - Patch mmap() system call
 - Addresses in stack
 - Mackecontext, swapcontext, getcontext
Exploiting System MMU 1/2

• Configuration and programming of system MMU (a.k.a IOMMU)
 • zDMA, PL
• 16 contexts banks
• Kernel module patch
 • Context: process page table
• Local and remote virtual address translation
SMMU: protected access to remote VAs

- Processes of the same application
 - Same protection domain
 - Protection domain ID
- Sender side:
 - FORTH’s NI at Programmable logic (PL)
 - Add PDID information to transaction
- Receiver side:
 - FORTH’s NI: extract PDID
 - PDID -> stream ID
 - Stream ID -> SMMU context bank
 - Context bank = translation context (process page table)
Overview

• Prototype employed
• Transfers between local and remote virtual addresses
• **User-level zero-copy RDMA**
 • Virtual addresses
• User-level low-latency atomic message delivery
• UnimemMPI
User level zero copy RDMA transfers

• Employ low power domain zDMA in PS
 • Cache coherent memory accesses
 • Eight independent channels

• Kernel module by FORTH
 • Each process: exclusive access to single zDMA channel
 • Associate PDID to zDMA channel
 • Control of zDMA from user space
 • Kernel space involved only at init time
 • Not involved in actual transfers
 • Zero-copy transfers

• Virtual addresses
 • No memory pinning
Overview

• Prototype employed
• Transfers between local and remote virtual addresses
• User-level zero-copy RDMA
 • Virtual addresses
• User-level low-latency atomic message delivery
• UnimemMPI
User-level low-latency atomic message delivery
1/2

• FORTH’s contribution in ExaNoDe
• Two hardware blocks
 • Virtualized mailbox
 • Virtualized packetizer
• Kernel modules
• User-space library
 • Expose to user-space code
• Virtualized mailbox
 • 256bits messages, 64 interfaces
• Virtualized packetizer
 • 256 bits messages, 64 interfaces, exploit AXI Burst capability
User-level low-latency atomic message delivery 2/2

• Kernel module
 • Configure virtualized packetizer/mailbox
 • Process/thread: attach one/64 virtual packetizer/mailbox

• User-level atomic message send/recv
 • Packetizer 256 bits message
 • Destined to remote process’s mailbox
Overview

• Prototype employed
• Transfers between local and remote virtual addresses
• User-level zero-copy RDMA
 • Virtual addresses
• User-level low-latency atomic message delivery
• UnimemMPI
MPI libraries in ExaNeSt

- MPI From BSC
 - MoU with ExaNoDe

- UnimemMPI
 - Contributed by FORTH
 - Debug/optimize performance
 - Software libraries
 - HW
 - Preliminary performance results
 - Other than micro-benchmarks

Manolis Ploumidis (FORTH), HiPEAC (Jan 2018, Manchester)
UnimemMPI overview 1/2

• Partial implementation of the MPI standard
 • Almost all point-to-point primitives
 • Collectives
 • Delegated to slightly modified MPICH library
• Point-to-point related functionality under-testing
 • Traffic through derived data types
 • Copy....
 • Persistent requests
 • MPI_Cancel, MPI_Mprobe, MPI_Improbe, MPI_Mrecv, MPI_Imrecv
UnimemMPI overview 2/2

MPI application

yes

Is pt2pt?

no

UnimemMPI

Unimem library: zDMA, Vpacketizer, VMbox

Mpch-3.2 (modified)

User Space: application

User Space: libraries

Kernel Space

Kernel

TCP
IP
MAC

Vmox k
Vpktzr k

DMA Channel m

Virtualized Mbox
Virtualized Pktzr

zDMA
SMMU
Eth

PS
PL

HW

Manolis Ploumidis (FORTH), HiPEAC (Jan 2018, Manchester)
UnimemMPI messaging protocol

Sender

msg envelope
Virtual Pcktizr N:
@Virt MboxN

RDMA read:
Prefix::Buf_S → Buf_R

ack
Virtual Pcktizr M:
@Virt MboxM

Receiver

Poll
VirtMboxN

Manolis Ploumidis (FORTH), HiPEAC (Jan 2018, Manchester)
UnimemMPI preliminary results 1/2

• Micro-benchmarks
 • Packetizer to remote mailbox message ~= 2 usec
 • zDMA-read (8 bytes) ~= 3 usec
 • zDMA-read (4096 bytes) ~= 18.3 usec

• MPI ping-pong test
 • UnimemMPI ping-pong = 4 mailbox messages + 2 zDMA-read ops

<table>
<thead>
<tr>
<th>Ping, pong msg size</th>
<th>UnimemMPI</th>
<th>MPICH(TCP sockets)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bytes</td>
<td>12.5 usec</td>
<td>279.6 usec</td>
</tr>
<tr>
<td>4096</td>
<td>46.0 usec</td>
<td>1207.1 usec</td>
</tr>
</tbody>
</table>
UnimemMPI preliminary results 2/2

- Preliminary results
 - LAMMPS application
 - State of the art molecular dynamics code
 - Cooperation with eXact lab
 - Rhodopsin problem
 - Three OMP threads per run

<table>
<thead>
<tr>
<th>Num of nodes</th>
<th>Timesteps</th>
<th>Unimem Wall Timesteps/s</th>
<th>MPICH (TCP sockets) Timesteps/s</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>600</td>
<td>1.599</td>
<td>1.542</td>
<td>3.6%</td>
</tr>
<tr>
<td>3</td>
<td>900</td>
<td>2.103</td>
<td>1.982</td>
<td>6.1%</td>
</tr>
<tr>
<td>4</td>
<td>1200</td>
<td>2.575</td>
<td>2.409</td>
<td>6.9%</td>
</tr>
<tr>
<td>6</td>
<td>1800</td>
<td>3.205</td>
<td>2.889</td>
<td>10.9%</td>
</tr>
</tbody>
</table>
Ongoing and future work

• Ongoing
 • Move from AXI-based prototype to ExaNet
 • Support missing pt2pt primitives
 • Allow remote page faults
 • Employ new mailbox
 • Larger messages, higher performance

• Future work
 • MPI messaging protocol = rdma-write based