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ExaNeSt collaboration:
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First code

B Astrophysics: PINOCCHIO

Luca Tornatore, G. Taffoni — INAF




PINOCCHIO and the Cosmic Web

B \ery fast (~10°3to N-body codes) and approximate (~ few %)
solution to the full non-linear gravitational problem, to obtain
positions and mass of hirarchically collapsed objects in the

Universe. Based on Lagrangian Perturbation Theory (LPT) and
FFTs

B Currently used in the ESA’s EUCLID project to build thousands
mock realizations of the Universe at the highest possible
resolution to calculate a covariance matrix
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PINOCCHIOQO: already tast and well-behaved
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3 major steps

PINOCCHIO

Calculation of

Generation of

ellipsoidal
collapse

density in
Fourier Space

|

~70% of wall-clock time

Computation
intensive

Memory issues
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1 — Refactoring the i.c. generation
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v" each MPI task must have only its portion of the initial random field

v' has same symmetries and properties
P re-engineering of memory patterns
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» completely re-designed algorithm to generate power-spectrum

» 2D/3D decomposition for FFT, instead of 1D
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2 — Refactoring Ellipsoidal Collapse

B Re-engineering of loops and
floating point operations

B Vectorization through
AVX/AVX2 SIMD instructions

B Twice as fast

B Some intrinsic conditionals
that may be masked efficiently
with AVX-512 set




I.C. generation : results
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I.C. generation : results
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Current status
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Current status
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Second code

B Astrophysics: HiGPUs
David Goz - INAF
Luciano Lavagno - Politecnico di Torino
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Direct N-Body problem

ALL PAIRS ¢ ALL BODIES
\
UPDATE
o e " VELOCITIES

FORCES

| S AND POSITIONS
. O(N?) O(N)

Tree-, PM- and Tree+PM- based methods are much faster
( ~O(NlogN) ) but are approximate, not suited for real close
encounters

HiGPUs - INAF



HiGPUs

HiGPUs (R. Capuzzo-Dolcetta, M. Spera, D. Punzo 2013) is a direct
N-body code suitable for studying the dynamical evolution of stellar
systems composed up to 10 millions of stars.

Predictor
It features: O(N)
« Hermite 6th order time integration scheme; [rv,a]

* individual time step for particles;

* implementation optimized for GPU

Hermite scheme is more expensive than , \
lower-order integrators but ensures high

orbit accuracy

Corrector EValtiation
O(N) Q(NQ)

M
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Porting N-body codes on FPGA

Proposed solutions available in literature (in single precision):

B based on hierarchical Tree algorithm (Kawai et al. 2006);

B based on first order Simple Euler method (Peng et al. 2016,
Del Sozzo et al. 2017).

Our aim:
Porting the full double-precision Hermite scheme, starting from
the most computationally-intensive kernel

Strategy

Vectorization Smaller amount of ops
Use of localmemory ~ Memory burst mode

Extended-precision Trade-off btw accuracy and
arithmetic resources usage
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Results (on GPUs testebed)
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B [ X-arithmetic ensures to keep control over the accumulation of
the round-off error during the simulation;

B time to solution reveals some overhead to handling EX-
arithmetic.

- VIVADO HLS fails in generating the correct RTL when using vector types
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Third code

B Material science: LAMMPS
P. Gorlani, G.P. Brandino, S. Cozzini - Exact-LAB
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Porting of miniMD on Zynq UltraScale

B MiniMD is a miniApp for molecular
dynamics, modelled after LAMMPS

B Same algorithmic complexity but reduced
features and code base size

B The OpenCL kernels of miniMD have
been ported and optimized on the FGPA
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The biggest limit: memory bandwidth
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Good improvement with
respect to running on ARM

cores, still much slower
than GPUs

No separation of host
memory/device memory
(and related data transfers)

Even for compute-bound
kernels, the small memory
bandwidth is still the

biggest limitation.

Execution time of the
force Kernel on 10242
particles
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The biggest limit: memory bandwidth

3500
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BSmall memory bandwidth ( ~10
GB/sec, while a GPU has >200
GB/sec)

B Bandwidth is the main limitations =
compute block on the FPGA cannot
be feed with enough data

B\North to notice: PL would allow AXI4
(256 beats), while the tested ARM
arch. only allows AXI3 (16 beats)
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