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Abstract—HPC systems need to keep growing in size to meet
the ever-increasing demand for high levels of capability and
capacity, often in tight time windows for urgent computation.
However, increasing the size, complexity and heterogeneity of
HPC systems also increases the risk and impact of system failures,
that result in resource waste and aborted jobs.

A major contributor to job completion time is the cost of inter-
process communication. To address performance and energy
efficiency, several prior studies have targeted improvements
of communication locality. To meet this goal, they derive a
mapping of MPI processes to system nodes in a way that reduces
communication cost. However, such approaches disregard the
effect of system failures.

In this work, we propose a resource allocation approach for
MPI jobs, considering both high performance and error re-
silience. Our approach, named Communication Profile, Topology
and node Failure (CPTF), takes into account the application’s
communication profile, system topology and node failure proba-
bility for assigning job processes to nodes. We evaluate variants
of CPTF through simulations of two MPI applications, one with
a regular communication pattern (LAMMPS) and one with an
irregular one (NPB-DT). In both cases, the variant of CPTF that
strives to avoid failure-prone nodes and communication paths
achieves lower time to complete job batches when compared to
the default resource allocation policy of Slurm. It also exhibits the
lowest ratio of aborted jobs. The average improvement in batch
completion time is 67% for NPB-DT and 34% for LAMMPS.

Index Terms—Failure aware resource allocation, Resilience,
MPI parallel jobs

I. INTRODUCTION

There is a wide range of different approaches for improving
the performance of MPI [1] parallel applications including
topology or machine-aware collective primitives [2], hardware
assistance for certain MPI primitives [3] and point-to-point
primitives, tuned for RDMA-capable networks [4]. Process
placement has received significant attention, focusing on the
assignment of system resources to a job’s processes with the
goal to minimize communication cost while also achieving
a fair load balance among system nodes [5]–[10]. The main
motivation behind this approach is to assign processes with a
heavy communication profile at nearby nodes so that commu-
nication cost is minimized.

Apart from managing resources and energy efficiency, relia-
bility has been recognized as major challenge towards exascale
systems. The emerging complex HPC systems are expected
to exhibit frequent failures [11]–[13]. Moreover, increased

system complexity is expected to lead to more complex and
thus more error-prone software [12], [14]. Several studies
have outlined the effect of various system failures on system
resource utilization. Authors in [15] report that in a large scale
HPC system, 20% or more of the computing resources are
wasted due to failures and recoveries. For one of Google’s
multipurpose clusters, it was found that a large fraction of time
is spent for jobs that do not complete successfully [14]. In [16]
authors show that system related errors cause an application to
fail once every 15 minutes. What is more, failed applications,
although few in number, account for approximately 9% of
total production hours. Authors in [13] examine node failure
rate in the dataset collected during 1995–2005 at LANL. The
number of failures per year per system can be as high as
1100 meaning that an application requiring the full cluster is
expected to fail more than two times per day. For mitigating
the impact of failures, failure awareness has been integrated
in several different approaches including checkpointing [17]–
[19], scheduling methods [20], [21] and methods for resource
allocation and resource management [22]–[24].

In this work, we propose a resource allocation approach
for MPI jobs, considering both high performance and er-
ror resilience. Our approach, named Communication Profile,
Topology and node Failure (CPTF) aware process placement,
takes into account the following input: (a) Communication
Profile of the job; (b) Topology description; and (c) Node
Failures. CPTF assumes that an initial training run of each
MPI job has been completed, allowing the extraction of that
job’s communication profile. It also assumes that the topology
graph of the parallel machine is available. We consider node
failures in post-processing the topology graph and derive
three variants of CPTF. The failure oblivious one ignores
failure-prone nodes, while the pessimistic one tries to exclude
failure prone nodes and communication paths from being used.
Finally, the weighted variant assigns greater weights to links
involving failure prone nodes. Process placement is derived by
solving the corresponding topology mapping problem, using
the Scotch graph mapping library [25], [26].

The process placement approaches discussed so far ( [5]–
[10]), take into account a description of the HPC system topol-
ogy along with a characterization of the MPI jobs communi-
cation profile, before assigning processing elements to that
job’s processes. The difference of the proposed approach is



that it also takes into account the probability of node failures.
As far as resource allocation techniques are concerned, we
assume native execution of jobs, which means that they are not
contained within VMs. Our approach aims at avoiding paths
with low reliability instead of allocating redundant nodes for
VM and job migration. In contrast to approaches that target
a reliability aware schedule for task-based applications, we
consider MPI jobs with processes coexisting for the duration
of the execution, with no ordering dependencies.

For the evaluation of the proposed approach, we simulate
batches of different MPI jobs in the SimGrid [27] environment,
which is a well-known distributed computer system simulator.
We use two different MPI applications, one exhibiting a
regular communication pattern (LAMMPS) and one exhibiting
an irregular one (NPB-DT). Simulations reveal that the
pessimistic variant of our placement approach achieves a
notable decrease in batch completion time, when compared to
the default placement approach of Slurm. In scenarios where
approximately 2% of the nodes exhibited an outage probability
of 2%, the corresponding improvement over Slurm’s policy
was 67% and 34%, respectively, for the two MPI applications
tried. Additionally, the proposed approach manages to reduce
the job instances that are aborted due to node failures.

II. THE CPTF PROCESS PLACEMENT APPROACH

In this section, we present our approach for assigning the
processes of an MPI job onto nodes of a given platform,
in manner that is aware of Communication Profile, Topology
and node Failures (CPTF). We focus on MPI applications
whose processes coexist for the entire duration of the job
execution. In accordance with relevant studies [7], [28], we
formulate the problem of assigning processes to platform
nodes as a topology mapping problem. The corresponding
mapping is derived prior to program execution. We model the
communication among different processes as an undirected
graph G = (VG, EG). Let N = |VG| denote the number
of MPI processes involved in the corresponding application.
For the rest of the study, we refer to this graph as the
communication graph. Vertex pk ∈ VG corresponds to process
with rank k (MPI COMM WORLD), an edge ek,l ∈ EG,
connecting vertices pk and pl, denotes communication be-
tween the corresponding processes. Edge weights may depict
either number of messages or total traffic exchanged between
the two processes. The evaluation results in Section III are
derived by considering total traffic volume as edge weights.

A. MPI Application Analysis via Profiling

For extracting the total bytes exchanged between each pair
of processes, we have implemented a custom profiling tool for
MPI applications. This tool is a dynamically linked library that
intercepts all calls to MPI primitives that initiate traffic, such
as point-to-point, collective, and one-sided ones. The output
produced is graph G which is represented as a matrix of size
N×N . Indexes in G are ranks in MPI COMM WORLD.
To capture accurately traffic through other communicators, we
take into account rank correspondence between each of them

and MPI COMM WORLD. For the case of collective
primitives, the profiling tool is tuned to emulate the appro-
priate algorithm for each collective. In this way, it is able to
accurately capture the traffic exchanged between each pair of
processes during each phase of that collective’s schedule.

Another feature of our profiling tool is that it produces a
traffic heatmap, which depicts the amount of bytes exchanged
between each process pair. This traffic heatmap allows for
visual inspection of the corresponding application’s com-
munication pattern and characterization of it as regular or
irregular. Regularity is based on the total traffic exchange
between each pair of processes for the whole execution of
the application. More precisely, we consider a communication
pattern as regular if traffic is arranged along the main diagonal
on a similar manner for all processes. This implies that each
MPI rank mostly communicates with nearby ranks. Discus-
sion regarding the effect of traffic regularity and benchmark
selection are deferred for Section III. Figures 1a and 1b depict
the traffic heatmap produced by our profiling tool, for the two
benchmarks used, that is, LAMMPS [29] and the DT NAS
parallel benchmark (NPB-DT) [30], respectively. The darker
the data point, the higher the amount of traffic exchanged
for the corresponding process pair. Figure 1a shows that

(a) (b)

Fig. 1: (a) LAMMPS run with 256 processes. (b) NPB-DT
class C run with 85 processes.

LAMMPS exhibits a more regular communication pattern with
traffic points being arranged along the main diagonal on a
similar manner for all processes.

The proposed process placement approach is profile-guided.
To derive an assignment of MPI processes to nodes, a training
run should be carried out first to obtain the corresponding
communication graph. However, this cost is amortized by
performing multiple runs of the same application using the
same input or configuration.

B. System Model based on topology graph

The underlying platform is modeled through topology graph
H = (VH , EH). Each vertex ni ∈ VH , for i = 1...|Vh|,
corresponds to one node. Vertices carry no weight. Let R
denote the routing logic of the underlying platform. Assuming
a 3D torus topology with fixed routing, the routing function
R(ni, nj) provides the list of links to be traversed by a
message sent from node ni to nj and |R(ni, nj)| the number
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of them. The weight of the edge connecting nodes ni to nj

is denoted as ei,j and depicts the number of hops traversed to
reach ni starting from nj .

The main difference of the proposed process placement
approach from similar studies is that assignment of processes
to nodes also takes into account node failures. The fault model
assumed is the following. Nodes may exhibit failures indepen-
dently of each other. With the term failure, we refer to any
hardware- or software-related event, or reboot, that may render
the node being temporarily unavailable. We further assume
that a node restart is enough to fix transient failures and that
restart takes place instantaneously, i.e. we disregard recovery
time. When a node enters the failed state, it is incapable of
performing both computation and communication, i.e. cannot
send, receive, or forward traffic on behalf of other nodes.
Consequently, communication attempts initiated by the MPI
library will result in error and, in turn, job abortion. Moreover,
when a node is in the failed state, it is not able to respond to
probes (heartbeats) aimed at inferring its availability. Finally,
we assume that there is no checkpoint/restart mechanism; thus,
after a node fails any affected application restarts from scratch.

We explore three variants of the proposed resource allo-
cation approach (CPTF), based on how the expected node
failures are handled. We assume that the failure probability
of each node is a constant given value, that can be extracted
by examining traces of failure events. A common approach
is to use such data and find the distribution that provides
the best fit for inter-failure time intervals [17], [19], [31]. A
simpler approach is to count failure events over a time-series
of heartbeats where a missing heartbeat is interpreted as node
unavailability. We have integrated a heartbeat mechanism to
Slurm for keeping a history of node failures [32].

The first variant, CPTF-Obl, takes a failure oblivious ap-
proach. Assuming a resource allocation request for k nodes,
CPTF-Obl searches for the first k consecutive free nodes,
disregarding failure probabilities, and forms a subgraph Hob

of the topology graph H .
The second variant, CPTF-Pes, adopts a pessimistic ap-

proach for handling failure prone nodes, allocating a partition
that contains the minimum number of such nodes. An addi-
tional requirement is for this partition to be contiguous and
rectangular. For the case of the 3D torus, these requirements
ensure that there will be no contention among traffic from
different partitions [33]. Several approaches have been pro-
posed for extracting a partition from a 3D torus with the afore-
mentioned restrictions, while also avoiding fragmentation [33],
[34]. Fragmentation may affect both system utilization and the
time that a job waits in the queue before being scheduled [33].
Such an approach would fit in a scheme that explores the
interplay between resource allocation and scheduling, as the
allocation for one job may impact jobs scheduled later. How-
ever, since the focus of this paper is on allocating resources
for a single job instance, we rely on a simpler heuristic to
extract a partition (subgraph) Hpes from H containing the least
number of failure-prone nodes. Assume that H is arranged
as a 16x8x8 3D torus, and there is a request for 128 nodes.

Let Hx,y,z=i denote a slice of the torus including every node
with x ∈ [0, 15], y ∈ [0, 7] and z = i. Let also NF (Hx,y,z=i)
denote the number of nodes with non-zero failure probability
in slice Hx,y,z=i. The goal of this heuristic is to find the slice
that satisfies argmin

i
NF (Hx,y,z=i). The same logic applies to

other torus arrangements where different blocks of consecutive
nodes are examined at various z positions.

The third variant, CPTF-Weighted, takes a more measured
approach to handling of failure-prone nodes. The idea for
CPTF-Weighted is to approximate the effect of node failures
on the cost of traversing a path by assigning larger weights to
paths that include nodes with a non-zero failure probability.
This variant produces a weighted version Hw of the original
topology graph H . From the routing function R(ni, nj) we
infer the list of links to be traversed by a message sent from
ni ∈ VH to nj ∈ VH . For each link l ∈ R(ni, nj), ls and
ld denote the origin and target of that link respectively. Using
this information we maintain a registry, with input a node
ID and output the list of paths with this node serving as
an intermediate hop. Combining information provided by the
routing function and node failure probabilities, we update edge
weights in the topology graph using Equation 1.

w(eu,v) =
∑

l∈R(u,v)

1+c×100×1[(pfls > 0)∨(pf
ld

> 0)], (1)

In Equation 1, pfls and pf
ld

are the failure probabilities for
nodes ls and ld, respectively. In this equation, c is a constant
that corresponds to the penalty assigned to links that include
a node with a non-zero failure probability. The value of c is
empirically set to 300.0, to lead Scotch to assign a prohibitive
cost on failure-prone links, while avoiding an overflow in the
computation of the total communication cost.

Moreover, 1[pfls > 0] is an indicator function with a value
of 1 if pfls > 0. Having described how the communication and
topology graphs are populated, the final step is to describe
the proposed process placement approach. All three CPTF
variants use the Scotch graph mapping library [25], [26] to
solve the corresponding graph mapping problem. The output
is a mapping of vertices (processes) of communication graph
G, onto vertices on the topology graphs Hob, Hpes and
Hw, respectively. For the case of the CPTF-Obl variant, this
mapping is denoted as Mob while Mob(pk) returns the node
ni ∈ Hob, where process pk is assigned. As an approximation
of the communication cost achieved by each mapping, we use
the Hops per Byte - HpB metric which is defined in [35].
This metric expresses the average number of hops that each
byte will pass through under a given mapping. Lower HpB
values indicate that traffic will cross fewer links until delivery
to the destination. For the CPTF-Obl variant, the HpB metric
is expressed through Equation 2.

HpBob =
∑

ek,l∈G

|ek,l| ∗ |R(Mob(pk),Mob(pl))|
|ek,l|

(2)

The proposed approach has been integrated into Slurm as a
resource selection plugin (cf. [32] for details). This plugin is
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invoked upon job arrival to allocate resources. If no resources
are found, it is invoked again by the backfill scheduling plugin
when the job is about to be dispatched.

III. EVALUATION

A. Experimental Methodology

The proposed approach relies on Scotch for solving the
corresponding graph mapping problem that derives a layout
of MPI processes on platform nodes. In the first part of our
evaluation (Section III-B), we verify that in the absence of
node failures, Scotch is able to derive mappings that perform
better than the default mapping performed by Slurm and the
following two simple heuristics: a greedy one and a heuristic
that randomly assigns processes to nodes. The evaluation of
the proposed process placement approach that considers node
failures is then presented in Section III-C.

For the evaluation of CPTF, we rely on the SimGrid [27]
distributed system simulation framework. Within the SimGrid
framework, the SMPI interface [36] is capable of simulating
unmodified MPI applications. In SMPI, the communication
calls of the application are intercepted and simulated, while
the computations are carried out in full on the host machine. To
enable the simulation of MPI application execution, we have
created the description file expected by SimGrid, describing
the links between nodes, nodes and routes. A node has a fixed
computing capability, expressed in floating point operations
per second (FLOPS). In our case, it is fixed to 6 Gflops.
Links are characterized by their bandwidth and latency, which
we set to 10 Gbps and one usec, respectively. Bandwidth
is intentionally set to a moderate value, to keep experiment
duration relatively short. High bandwidth values would mask
out the effect of communication cost on job completion time.
We assume fixed routing, i.e. each pair of nodes is connected
through a single static path. The simulated topology matches
exactly the topology assumed for deriving the mapping of
processes to platform nodes. The main advantage of the
simulation-based evaluation is that it eases experimentation
with different torus topologies and injection of artificial faults.

B. Assessing the quality of mappings produced by Scotch

All three variants of the proposed resource allocation ap-
proach utilize the Scotch library to derive a mapping of the
communication graph to the post-processed topology graph.
It is important thus to assess the quality of the mappings
produced using Scotch. We compare its performance with the
following three approaches: (a) Default-Slurm, (b) Random,
and (c) Greedy.

Default-Slurm denotes the default policy employed by
Slurm (referred to as Slurm hereafter). The default resource
selection of Slurm is implemented through the linear select
plugin [37] where nodes are arranged in an one-dimensional
array. For a request for k nodes with no overcommit require-
ment, the first k consecutive available nodes are allocated to
the job. The Random approach randomly picks the node for
each process. Finally, the Greedy approach sorts all different
process pairs with respect to the total traffic exchanged. Then,

Torus Slurm Scotch Scotch-linear Random Greedy
16x8x8 4.30 3.80 3.51 6.14 5.58
8x8x16 2.52 3.42 2.71 5.92 4.04
8x16x8 3.47 3.70 3.12 6.78 4.60

TABLE I: HpB metric for LAMMPS with 256 processes.

Torus Slurm Scotch Scotch-linear Random Greedy
16x8x8 6.32 2.89 2.35 6.87 3.91
8x8x16 4.89 1.99 2.19 6.52 3.78
8x16x8 6.29 2.34 2.35 7.1 3.7

TABLE II: HpB metric for NPB-DT with 85 processes.

it iterates over all pairs, in sorted order as per traffic volume,
and places processes as close to each other as possible.

We consider two different Scotch-based approaches. The
first one, denoted simply as Scotch, uses all available nodes
when selecting the subset where the processes will be placed.
The second variant, denoted as Scotch-linear, considers only
the nodes selected by Slurm.

For the evaluation process, we select benchmarks that cap-
ture three key parameters that affect the performance of similar
resource allocation approaches: the communication to compu-
tation ratio, the mix of point-to-point and collective commu-
nication, and the communication pattern. The benchmarks se-
lected are LAMMPS [29] and NPB-DT from the NAS parallel
benchmark suite [30]. For NPB-DT we focus on the class C
variant which involves 85 processes. LAMMPS is a state-of-
the-art molecular dynamics code, while NPB-DT is representa-
tive of codes with unstructured computation, parallel I/O, and
data movement. Our approach minimizes the communication
cost; thus in applications where computation outweighs the
communication, the expected speedup is insignificant. Both
benchmarks spent a significant fraction of their execution
time for communication. Moreover, benchmarks dominated
by traffic through collective primitives leave limited room for
communication cost minimization since there are no specific
pairs with remarkably more traffic. Finally, Slurm’s allocation
policy iterates sequentially over the available nodes; thus it is
highly probable for processes with nearby ranks to be placed
on topologically nearby nodes. This is a reasonable approach
for regular communication patterns and leaves limited room
for optimizing the communication cost with an approach like
the suggested one. However, the default placement policy used
by Slurm does not match well with irregular communication
patterns. NPB-DT exhibits an irregular communication pattern
with a substantial amount of point-to-point traffic. LAMMPS
on the other hand exhibits a regular communication pattern
and has a significant amount of collective traffic. These two
benchmarks allow us to probe the assumptions of Scotch and
Slurm and cover all the aforementioned parameters.

We first compare the Hops-per-Byte (HpB) metric resulting
from each of the aforementioned approaches, for three differ-
ent arrangements of a 1024-node 3D torus. Table I presents
the corresponding results for the case of a LAMMPS with
256 processes. Overall, Scotch-linear achieves a significant
decrease in the HpB. In the 8x8x16 arrangement, the Slurm
placement policy only achieves a marginal benefit over Scotch-
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Torus Slurm Scotch Scotch-linear Random Greedy
16x8x8 184 217 220 157 176
8x8x16 255 210 280 160 214
8x16x8 214 205 212 149 190

TABLE III: Timesteps/sec for LAMMPS with 256 processes.

Torus Slurm Scotch Scotch-linear Random Greedy
16x8x8 43.3 29.7 27.0 48.2 29.6
8x8x16 34.6 29.8 29.3 43.1 29.4
8x16x8 39.0 28.9 28.9 51.4 27.6

TABLE IV: Completion time for NPB-DT with 85 processes.

linear. Random allocation, which is communication profile and
topology oblivious, results in the highest value of the HpB
metric implying higher communication cost. Greedy allocation
is only better when compared to Random.

Table II presents the corresponding results for NPB-DT.
Comparing Scotch-linear with Slurm, we observe that the
improvement in the HpB metric, even with as few as 85
processes, is remarkable. This is due to the irregular com-
munication pattern exhibited by NPB-DT that leaves enough
room for Scotch to optimize the mapping of processes to
nodes. Moreover, the Greedy heuristic is ranked third in
all scenarios explored. Similarly to LAMMPS, the Random
approach results in the worst performance.

We further assess the quality of the mappings produced
by Scotch through simulations with SimGrid. We derive the
assignment of processes to platform nodes, and provide this
mapping to SimGrid as its machine file. Using SimGrid’s
smpirun tool, we run a simulation of the corresponding ap-
plication. For NPB-DT, the performance metric is completion
time. For LAMMPS, the metric is the number of timesteps per
second (reported by the application). For the case of Scotch
variants, each application’s communication graph is extracted
through a profiling run with the tool described in Section II.
This communication graph becomes the input to Scotch, along
with a representation of the platform. Scotch in turn produces
the mapping of that job’s processes onto platform nodes.
Finally, this mapping is given as input to SimGrid.

Table III shows the timesteps per second achieved by each
resource allocation approach on each different arrangement
of the torus topology, for the case of LAMMPS. Table IV
presents the corresponding results (completion time) for NPB-
DT. For LAMMPS, in two out of the three torus arrangements,
Scotch-linear achieves 20% and 10% more timesteps per sec-
ond than the default allocation policy of Slurm. For the third
arrangement, performance is almost equal. Therefore, even
in the case of an application with a regular communication
pattern, there is still room for improvement by taking into
account the application communication profile and topology.
For NPB-DT, an application with an irregular communication
pattern, the benefits can be even more significant. Scotch-linear
achieves 37.6%, 15.3%, and 26.5% lower completion time
than Slurm for the three torus variants. Differing from the
pattern observed for LAMMPS, the greedy heuristic achieves
performance that is close to Scotch-linear.

Overall, in almost all scenarios explored, Scotch-linear

achieves the best performance for both LAMMPS and NPB-
DT. In one scenario for the NPB-DT benchmark Greedy
achieves better performance but it is under-performing in the
case of LAMMPS benchmark.

C. Performance and resilience with CPTF

In this section, we evaluate the performance of the proposed
approach in the presence of node failures. Instead of simulating
a single MPI job instance, we consider job batches, each
consisting of 100 instances of the same MPI application. We
use two criteria to evaluate each process placement approach:
batch completion time, and abort ratio. The batch completion
time is the total time required to complete the queue of 100
instances. The abort ratio is the fraction of instances that were
aborted due to one or more node failures. As explained in
Section II, when a job fails we assume that it is restarted
from scratch, rather than being restored from a checkpoint.
This assumption simplifies the way to update batch completion
times in the presence of node failures. Each time a job is
aborted, the batch completion time is augmented by a time
interval equal to a successful run, and then the job is restarted.

We follow the fault model introduced in Section II-B,
assuming that nodes fail independently of each other and that
failures are due to temporary software or hardware errors. We
further assume that reboots can fix the errors and that they
incur zero overhead due to recovery time. For the first part of
our work towards a failure-aware resource allocation approach,
our goal is to explore the benefit of avoiding failures and the
implications on performance. Replaying traces of node failures
offers the advantage of realistic data with the drawback of
being machine or load-dependent. Instead, for our evaluation
process we relay on a more simple approach for simulating
failures. For each application batch, we randomly select a
set of nodes Nf that are assumed to exhibit failures. The
number of nodes selected to form set Nf is fixed to 2%
of the total number of nodes. For the 3D torus arrangement
assumed (16x8x8), these nodes participate in approximately
23.2% of all the communication paths (average over all 5
different Nf sets). Instead of generating a synthetic trace of
time intervals between successive node failures, we adopt the
following approach. For each job instance, the state of each
node i, is a random variable xi with a value xi = 0 indicating
a failure. In [38], authors collect and analyze traces from 10
clusters at Los Alamos National Lab. Clusters are arranged in
two groups and analysis reveals that the unconditional failure
probability of a given node during a random day is 0.31%
and 4.6%, respectively, for the two groups. Following these
observations, we assume that the failure probability (pf ) of a
given node during a job’s lifetime is fixed and equal to 2%.
For each job instance simulated, a Bernoulli trial on xi with
pf = p(xi == 0) = 0.02 determines if a failure will be
simulated for that node or not.

The evaluation experiments in this section compare Slurm’s
default placement approach with variants of the proposed
placement approach (Section II-B): CPTF-Pes, CPTF-Obl,
CPTF-Weighted). CPTF-Weighted uses the Scotch method
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Fig. 2: Batch completion times for NPB-DT.

with the weighted version of the original topology graph,
whereas both CPTF-Pes and CPTF-Obl use the Scotch-linear
method with different partitions. Batches of jobs are run in
the SimGrid simulator. Each simulated scenario corresponds
to a single job instance. The MPI applications simulated
are LAMMPS (256 processes) and NPB-DT (85 processes)
of class C. The simulated platform consists of 1024 nodes
arranged as a 16x8x8 3D Torus. For simulating a node failure,
we rely on the fact that SimGrid allows to specify different
values for a specific link’s capacity, at different points in sim-
ulated time. Specifying a link capacity value of zero, results
in all transmissions over this link failing, and consequently
in aborting the MPI job. These variations in link capacity are
defined in the platform description given as input to SimGrid.
Thus, for every node that will be emulated as being in the
failed state, the platform description is updated by assigning a
zero bandwidth value to all links involving this node. Figure
2 presents batch completion times as derived by SimGrid
simulations for the case of NPB-DT. The CPTF-Pes variant
of the proposed approach achieves the lower completion time
for all batches. CPTF-Pes is the variant that post processes the
topology graph in an attempt to avoid failure-prone nodes and
paths. The default resource allocation policy of Slurm achieves
the higher batch completion time. Compared to Slurm, CPTF-
Pes offers 67% lower batch completion times (on average
over all five batches). This drop is due to two factors: (1) the
reduction in the communication cost as the result of topology-
and application profile-aware placement; and (2) the drop in
the jobs being aborted due to node outages. The average
job abort ratio (over 500 simulated NPB-DT instances) is
0.8% for the case of CPTF-Pes, and 5.6% for Slurm’s default
process placement policy. The failure-oblivious variant CPTF-
Obl results in 9.3% higher average batch completion time
when compared to the pessimistic variant CPTF-Pes, and an
abort ratio of 5.6%. Overall, CPTF-Pes results in an abort ratio
85% lower than that of Slurm and CPTF-Obl.

Figure 3 presents the corresponding simulated results for
the case of LAMMPS. On average over all 5 batches, CPTF-
Pes achieves 34% lower batch completion time than Slurm.
Comparing this result with the case of NPB-DT, the perfor-
mance gain for an application with a regular communication
pattern is reduced. However, the average job abort ratio over
all batches is 5.4% for the case of CPTF-Pes and 12.4% for
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Fig. 3: Batch completion times for LAMMPS.

the case of Slurm. As in the case of NPB-DT, the drop in
the batch completion time is attributed to the reduction of
both the communication cost and the overhead of failed jobs
that need to be restarted. Comparing the failure-oblivious and
pessimistic variants reveals that ignoring node failures results
in 7.0% higher average batch completion time. However,
CPTF-Pes achieves a lower job abort ratio when compared
to CPTF-Obl, with the corresponding ratios being 5.4% and
12.4%, respectively (i.e. a 57% reduction in job aborts).

For both LAMMPS and NPB-DT, the CPTF variant that
disregards node failure probabilities does not achieve signif-
icantly worse performance than CPTF-Pes. For LAMMPS,
requesting 25% of total nodes (i.e. 256 out of 1024), makes
it hard to find a contiguous and rectangular partition with a
minimum number of failure-prone nodes. For NPB-DT CPTF-
Pes achieves an 85% reduction in job abort ratio, whereas for
LAMMPS the reduction in job abort ratio is 57%. Moreover,
the feasible improvement is also limited by the ratio of
nodes that are emulated as failure-prone and their failure
probability. Note though that the benefit achieved over the
CPTF-Obl is not negligible, especially if one considers long
running jobs. Avoidance of even a few job abortions saves a
significant amount of cluster resources. Furthermore, failure
avoidance is also important from the point of view of the
user that will experience lower job completion delay. Another
observation for both benchmarks is that the CPTF variant,
which adjusts weights in the topology graph to capture the
effect of node failures, exhibits rather high batch completion
times. Despite the assignment of prohibitively high costs on
failure-prone links, CPTF-Weighted fails in preventing Scotch
from selecting paths with failure prone nodes. For LAMMPS,
the average abort ratio is 49.6%, 12.4% and 5.4% for CPTF-
Weighted, CPTF-Obl and CPTF-Pes, respectively.

IV. RELATED WORK

For improving the performance of MPI applications there
are numerous studies targeting different parts of the MPI
implementation including collectives [2], [39], point-to-point
primitives [4] or utilizing hardware support [3]. Studies
though that are most related to our work employ as input
two graphs, capturing the application communication patterns
along with the platform architecture, respectively. Most of
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them address the mapping problem described in [40], i.e. as-
sign processes of an application onto computational resources
of the available platform [28]. Numerous such studies focus
on deriving improved methods for solving the corresponding
mapping problem [6]–[10]. The work in [5] presents an algo-
rithm for reordering ranks of an MPI job so that communica-
tion cost is minimized. A similar approach [41] formulates the
assignment of processes to nodes as a Quadratic Assignment
Problem (QAP) [40], and applies a heuristic for solving it. The
work in [10] discusses an approach that is complementary to
that of assigning processes of a parallel job onto platform
resources. Specifically, this approach rearranges the logical
communication of broadcast and allgather operations taking
into account process distances, instead of process ranks, along
with topology information. In all aforementioned studies,
resource allocation considers only the application’s commu-
nication pattern and the target machine’s topology, ignoring
the impact of failures on performance.

Acknowledging the impact of failures on both application
and system performance, several studies adopt failure-aware
resource allocation approaches. The work in [23] suggests a
resource management scheme for workloads that run within
virtual machines (VMs). For allocating nodes to VMs both
their capacity and reliability is taken into account. The key
idea is that VMs in failed nodes can be migrated. However,
VMs incur some overhead; therefore, our approach assumes
jobs running directly on the available resources. The work
in [42] presents algorithms that allocate resources for MPI
jobs, such that system reliability is maximized, by taking into
account the probability of nodes failing during the execution
time of each job. Our work differs by considering both
reliability and communication cost for assigning resources
to job processes. Work in [33] suggests a scheduler for the
BlueGene/L system that allocates nodes to a job, taking into
account node reliability and the maximal free partition left
available after allocation. Our work differs in that we also
take into account application communication patterns before
performing resource allocation.

Exploiting the predictability of failures at various levels
[11], [22], [42], [43], several studies aim to mitigate the
effect of faults through checkpoint and restart. The key idea
is to mine the temporal pattern of faults and, based on
inferred patterns, optimize the checkpointing interval [17]–
[19], [22], thus reducing the checkpointing overhead which can
be significant at large scales [13]. Our current work assumes
no checkpoint mechanism; however, part of our future work
is to explore the benefit of checkpointing.

From the point of view of the parameters taken into ac-
count for resource allocation, our approach is mostly related
to studies aiming at reliability-aware scheduling of parallel
applications. In such studies applications consist of multiple
tasks that are modelled by a directed acyclic graph. Scheduling
can then target both a minimized scheduled length and reduced
failure probability [21]. The work in [20] extends the dynamic
level scheduling (DLS) algorithm to consider the reliability
of resources. The Dynamic Reliability-Cost-Driven (DRCD)

Scheduling Algorithm has been developed in the context of
real-time scheduling for parallel jobs [44], with the primary
goal to minimize reliability cost. Our CPTF approach focuses
on MPI jobs, i.e. jobs whose processes co-exist for the duration
of the application run. There are no process deadlines to be
satisfied nor any time-based dependencies among processes.

V. CONCLUSIONS

In this work we contribute CPTF, a resource allocation
approach for improving the performance of parallel MPI jobs
running on a cluster. It tackles two contributors to MPI job
completion time: communication cost and job restarts due to
node failures. We consider both the cluster topology and job
communication profiles for minimizing communication cost.
Moreover, we also take into account node failure probabilities
before assigning job processes to cluster nodes. The motivation
is that avoiding failure-prone nodes and communication paths
limits the number of jobs that will be restarted due to node
failures, thus reducing resource waste. We derive three variants
of CPTF based on how node failure probabilities are used in
processing the cluster topology graph.

We evaluate our approach through SimGrid simulations of
two applications, one with a regular communication pattern
(LAMMPS) and one with an irregular one (NPB-DT). In
both cases, the variant of CPTF that strives to avoid failure-
prone nodes and communication paths achieves lower time to
complete job batches when compared to the default resource
allocation policy of Slurm. It also exhibits the lowest ratio of
aborted jobs. The average improvement in batch completion
time is 67% for NPB-DT and 34% for LAMMPS.

As future work, we are comparing the CPTF approach with
one that schedules checkpoints based on an estimation of likely
failures, to determine which of the two results in improved
batch completion time and resource utilization.
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